Predictive Analytics is disrupting the business-consumer dynamic. To improve engagement with their customers, organizations have begun identifying potential segments (predictive audiences) that are likely to convert with them. Modelling data to learn about the potential ‘new’ customer, their preferences and spending behaviour has already proven demonstrably higher conversion rates and lower churn rates. In fact, the market value for these types of services is expected to touch $12.4B by 2022.
As we transition into a semi-connected world supported by global IoT sensors and devices, the real-time analysis of past and future-probable events is evolving business actions more prescriptive in nature. Every touch or interaction triggered by an individual customer is a data point that is captured, stored and examined for insights. Data is an interminable asset that continues to grow exponentially while storage likewise is getting cheaper each year. With nearly infinite cloud computing and scaling it becomes much easier to process these extremely large amounts of data.
But, are customer journeys actually getting better? Are these journeys still reactive? How much of the world has moved to a predictive-first approach? and, has it really helped CXOs address their business goals? Let’s evaluate the state of real-time predictive trends that are being put to use by global enterprises.
First, let’s look at some easily identifiable use cases that have some verifiable results.
- Identity Resolution — understanding the individual persona c