Astronaut loading animation Circular loading bar

Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(7)

Customer Journey(16)

Design(39)

Solar Industry(7)

User Experience(62)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(17)

Testing(9)

Android(48)

Backend(32)

Dev Ops(8)

Enterprise Solution(28)

Technology Modernization(4)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(36)

Insurtech(63)

Product Innovation(54)

Solutions(21)

E-health(11)

HealthTech(23)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(139)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(17)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

10 Analytics Tools to Guide Data-Driven Design

Analytics are essential for informing website redesigns since they offer insightful data on user behavior, website performance, and areas that may be improved. Here is a list of frequently used analytics tools to guide data-driven design that can be applied at different stages of the website redesign process. 

Analytics Tools to Guide Data-Driven Design

1. Google Analytics:

Use case scenario: Website Audit, Research, Analysis, and Technical Assessment
Usage: Find popular sites, entry/exit points, and metrics related to user engagement by analyzing traffic sources, user demographics, and behavior flow. Recognize regions of friction or pain points by understanding user journeys. Evaluate the performance of your website, taking note of conversion rates, bounce rates, and page load times.

2. Hotjar:

Use case scenario: Research, Analysis, Heat Maps, User Experience Evaluation
Usage: Use session recordings, user surveys, and heatmaps to learn more about how people interact with the website. Determine the high and low engagement regions and any usability problems, including unclear navigation or form abandonment. Utilizing behavior analysis and feedback, ascertain the intentions and preferences of users.

3. Crazy Egg:
Use case scenario: Website Audit, Research, Analysis
Usage: Like Hotjar, with Crazy Egg, you can create heatmaps, scrollmaps, and clickmaps to show how users interact with the various website elements. Determine trends, patterns, and areas of interest in user behaviour. To evaluate various design aspects and gauge their effect on user engagement and conversions, utilize A/B testing functionalities.

4. SEMrush:

Use case scenario: Research, Analysis, SEO Optimization
Usage: Conduct keyword research to identify relevant search terms and phrases related to the website’s content and industry. Analyze competitor websites to understand their SEO strategies and identify opportunities for improvement. Monitor website rankings, backlinks, and organic traffic to track the effectiveness of SEO efforts.

5. Similarweb:
Use case
scenario: Research, Website Traffic, and Demography, Competitor Analysis
Usage: By offering insights into the traffic sources, audience demographics, and engagement metrics of competitors, Similarweb facilitates website redesigns. It influences marketing tactics, SEO optimization, content development, and decision-making processes by pointing out areas for growth and providing guidance. During the research and analysis stage, use Similarweb data to benchmark against competitors and guide design decisions.

6. Moz:
Use case scenario: Research, Analysis, SEO Optimization
Usage: Conduct website audits in order to find technical SEO problems like missing meta tags, duplicate content, and broken links. Keep an eye on a website’s indexability and crawlability to make sure search engines can access and comprehend its material. To find and reject backlinks that are spammy or of poor quality, use link analysis tools.

7. Ahrefs:
Use case scenario:
Research, Analysis, SEO Optimization

Usage: Examine the backlink profiles of your rivals to find any gaps in your own backlink portfolio and possible prospects for link-building. Examine the performance of your content to find the most popular pages and subjects that appeal to your target market. Track social media activity and brand mentions to gain insight into your online reputation and presence.

8. Google Search Console:

Use case scenario: Technical Assessment, SEO Optimization
Usage: Monitor website indexing status, crawl errors, and security issues reported by Google. Submit XML sitemaps and individual URLs for indexing. Identify and fix mobile usability issues, structured data errors, and manual actions that may affect search engine visibility.

9. Adobe Analytics:
Use case scenario:
Website Audit, Research, Analysis,
Usage: Track user interactions across multiple channels and touchpoints, including websites, mobile apps, and offline interactions. Segment users based on demographics, behavior, and lifecycle stage to personalize marketing efforts and improve user experience. Utilize advanced analytics features such as path analysis, cohort analysis, and predictive analytics to uncover actionable insights.

10. Google Trends:

Use case scenario: Content Strategy, Keyword Research, User Intent Analysis
Usage: For competitor analysis, user intent analysis, and keyword research, Google Trends is used in website redesigns. It helps in content strategy, seasonal planning, SEO optimization, and strategic decision-making. It directs the production of user-centric content, increasing traffic and engagement, by spotting trends and insights.

About the Author:

Vijendra is currently working as a Sr. UX Designer at Mantra Labs. He is passionate about UXR and Product Design.

Cancel

Knowledge thats worth delivered in your inbox

Platform Engineering: Accelerating Development and Deployment

The software development landscape is evolving rapidly, demanding unprecedented levels of speed, quality, and efficiency. To keep pace, organizations are turning to platform engineering. This innovative approach empowers development teams by providing a self-service platform that automates and streamlines infrastructure provisioning, deployment pipelines, and security. By bridging the gap between development and operations, platform engineering fosters standardization, and collaboration, accelerates time-to-market, and ensures the delivery of secure and high-quality software products. Let’s dive into how platform engineering can revolutionize your software delivery lifecycle.

The Rise of Platform Engineering

The rise of DevOps marked a significant shift in software development, bringing together development and operations teams for faster and more reliable deployments. As the complexity of applications and infrastructure grew, DevOps teams often found themselves overwhelmed with managing both code and infrastructure.

Platform engineering offers a solution by creating a dedicated team focused on building and maintaining a self-service platform for application development. By standardizing tools and processes, it reduces cognitive overload, improves efficiency, and accelerates time-to-market.  

Platform engineers are the architects of the developer experience. They curate a set of tools and best practices, such as Kubernetes, Jenkins, Terraform, and cloud platforms, to create a self-service environment. This empowers developers to innovate while ensuring adherence to security and compliance standards.

Role of DevOps and Cloud Engineers

Platform engineering reshapes the traditional development landscape. While platform teams focus on building and managing self-service infrastructure, application teams handle the development of software. To bridge this gap and optimize workflows, DevOps engineers become essential on both sides.

Platform and cloud engineering are distinct but complementary disciplines. Cloud engineers are the architects of cloud infrastructure, managing services, migrations, and cost optimization. On the other hand, platform engineers build upon this foundation, crafting internal developer platforms that abstract away cloud complexity.

Key Features of Platform Engineering:

Let’s dissect the core features that make platform engineering a game-changer for software development:

Abstraction and User-Friendly Platforms: 

An internal developer platform (IDP) is a one-stop shop for developers. This platform provides a user-friendly interface that abstracts away the complexities of the underlying infrastructure. Developers can focus on their core strength – building great applications – instead of wrestling with arcane tools. 

But it gets better. Platform engineering empowers teams through self-service capabilities.This not only reduces dependency on other teams but also accelerates workflows and boosts overall developer productivity.

Collaboration and Standardization

Close collaboration with application teams helps identify bottlenecks and smooth integration and fosters a trust-based environment where communication flows freely.

Standardization takes center stage here. Equipping teams with a consistent set of tools for automation, deployment, and secret management ensures consistency and security. 

Identifying the Current State

Before building a platform, it’s crucial to understand the existing technology landscape used by product teams. This involves performing a thorough audit of the tools currently in use, analyzing how teams leverage them, and identifying gaps where new solutions are needed. This ensures the platform we build addresses real-world needs effectively.

Security

Platform engineering prioritizes security by implementing mechanisms for managing secrets such as encrypted storage solutions. The platform adheres to industry best practices, including regular security audits, continuous vulnerability monitoring, and enforcing strict access controls. This relentless vigilance ensures all tools and processes are secure and compliant.

The Platform Engineer’s Toolkit For Building Better Software Delivery Pipelines

Platform engineering is all about streamlining and automating critical processes to empower your development teams. But how exactly does it achieve this? Let’s explore the essential tools that platform engineers rely on:

Building Automation Powerhouses:

Infrastructure as Code (IaC):

CI/CD Pipelines:

Tools like Jenkins and GitLab CI/CD are essential for automating testing and deployment processes, ensuring applications are built, tested, and delivered with speed and reliability.

Maintaining Observability:

Monitoring and Alerting:

Prometheus and Grafana is a powerful duo that provides comprehensive monitoring capabilities. Prometheus scrapes applications for valuable metrics, while Grafana transforms this data into easy-to-understand visualizations for troubleshooting and performance analysis.

All-in-one Monitoring Solutions:

Tools like New Relic and Datadog offer a broader feature set, including application performance monitoring (APM), log management, and real-time analytics. These platforms help teams to identify and resolve issues before they impact users proactively.

Site Reliability Tools To Ensure High Availability and Scalability:

Container Orchestration:

Kubernetes orchestrates and manages container deployments, guaranteeing high availability and seamless scaling for your applications.

Log Management and Analysis:

The ELK Stack (Elasticsearch, Logstash, Kibana) is the go-to tool for log aggregation and analysis. It provides valuable insights into system behavior and performance, allowing teams to maintain consistent and reliable operations.

Managing Infrastructure

Secret Management:

HashiCorp Vault protects secretes, centralizes, and manages sensitive data like passwords and API keys, ensuring security and compliance within your infrastructure.

Cloud Resource Management:

Tools like AWS CloudFormation and Azure Resource Manager streamline cloud deployments. They automate the creation and management of cloud resources, keeping your infrastructure scalable, secure, and easy to manage. These tools collectively ensure that platform engineering can handle automation scripts, monitor applications, maintain site reliability, and manage infrastructure smoothly.

The Future is AI-Powered:

The platform engineering landscape is constantly evolving, and AI is rapidly transforming how we build and manage software delivery pipelines. The tools like Terraform, Kubecost, Jenkins X, and New Relic AI facilitate AI capabilities like:

  • Enhance security
  • Predict infrastructure requirements
  • Optimize resource security 
  • Predictive maintenance
  • Optimize monitoring process and cost

Conclusion

Platform engineering is becoming the cornerstone of modern software development. Gartner estimates that by 2026, 80% of development companies will have internal platform services and teams to improve development efficiency. This surge underscores the critical role platform engineering plays in accelerating software delivery and gaining a competitive edge.

With a strong foundation in platform engineering, organizations can achieve greater agility, scalability, and efficiency in the ever-changing software landscape. Are you ready to embark on your platform engineering journey?

Building a robust platform requires careful planning, collaboration, and a deep understanding of your team’s needs. At Mantra Labs, we can help you accelerate your software delivery. Connect with us to know more. 

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot