Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(8)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(29)

Technology Modernization(8)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(57)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(146)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(21)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

Artificial Intelligence | Solve real world complex problems

2 minutes, 14 seconds read

Artificial Intelligence may be a concept unknown to a majority of consumers, but we unknowingly using AI in our everyday life. How? What about the smartphones with Google now and Siri, they help find information for you when you need it.

AI_Image_1

With real-time problem solving skills the only thing you have to worry about are your goals as you can leave the assistance to a computer that can think on it’s own but for your benefit. Many intelligent brains working in Artificial Intelligence to make our life comfortable. If you could have someone looking over your day to day needs it’s rather easy to focus on more important things in life. Implementing AI into our lives has been studied for years and now things are getting more real and Mantra Labs is well invested into it.

From consulting on niche technologies, to completely owning your AI initiative – Mantra Labs help you solve complex real world problems, leveraging their expertise in various aspects of AI.

Data Science: It is the study of where information comes from, what it represents and how it can be turned into a valuable resource in the creation of business and IT strategies.

Natural Language: Natural Language Processing (NLP) refers to AI method of communicating with an intelligent system using a natural language such as English. Processing of Natural Language is required when you want an intelligent system like a robot to perform as per your instructions, when you want to hear a decision from a dialogue based clinical expert system, etc.

Machine Learning: It is a type of artificial intelligence (AI) that provides computers with the ability to learn without being explicitly programmed. Machine learning focuses on the development of computer programs that can teach themselves to grow and change when exposed to new data.

• Integrations: Most artificial intelligence systems involve some sort of integrated technologies, for example, the integration of speech synthesis technologies with that of speech recognition.

Deep Learning: Deep learning refers to artificial neural networks that are composed of many layers.  It  is a branch of machine learning based on a set of algorithms that attempt to model high level abstractions in data by using a deep graph with multiple processing layers, composed of multiple linear and non-linear transformations

• Computer Vision: It is the science that aims to give a similar, if not better, the capability to a machine or computer. Computer vision is concerned with the automatic extraction, analysis and understanding of useful information from a single image or a sequence of images.

Making an approach to pursue the most advanced technology takes a lot of innovation and it is exactly what Mantra Labs has been doing.

If you are keen to solve real world problem using AI, Drop us a line hello@mantralabsglobal.com

Cancel

Knowledge thats worth delivered in your inbox

Design Systems: Building and Maintaining Consistent UI/UX

In the world of product design, consistency is the cornerstone of delivering a seamless user experience. As digital products evolve and scale, the challenge of maintaining design consistency across multiple platforms, teams, and touchpoints becomes more complex. This is where design systems come in. A design system is a comprehensive set of guidelines, components, and tools that help designers and developers create a consistent and cohesive user interface (UI) and user experience (UX). From a designer’s perspective, building and maintaining a design system requires a strategic approach to ensure scalability, flexibility, and alignment with business goals.

Why Design Systems Matter?

Design systems are more than just style guides or pattern libraries. They offer a unified language for design and development, bridging the gap between creativity and functionality. Here are a few reasons why they are critical:

  1. Consistency Across Products

      One of the primary goals of a design system is to ensure uniformity across different platforms and devices. When users interact with a product, whether on a website or a mobile app, they expect a consistent experience. A well-implemented design system ensures that visual elements, interactions, and behaviors are aligned, offering a familiar and intuitive experience for users.

2. Faster Iteration

      With a design system in place, teams can reuse components and patterns rather than reinventing the wheel for each new feature. This speeds up the design and development process, allowing teams to focus on solving new problems instead of reworking existing designs. For designers, it means less time spent on repetitive tasks and more time dedicated to innovation.

3. Scalability

     As products grow and new features are added, maintaining a coherent UI/UX without a design system can become chaotic. A design system provides a scalable framework, enabling teams to add new elements or modules without compromising the overall consistency of the product.

4. Improved Collaboration