10%

Try : Insurtech, Application Development

Edtech(5)

Events(33)

Interviews(10)

Life@mantra(10)

Logistics(1)

Strategy(14)

Testing(8)

Android(44)

Backend(28)

Dev Ops(2)

Enterprise Solution(22)

Frontend(28)

iOS(40)

Javascript(13)

AI in Insurance(29)

Insurtech(58)

Product Innovation(36)

Solutions(15)

Augmented Reality(10)

Customer Journey(8)

Design(7)

User Experience(25)

E-health(3)

HealthTech(6)

mHealth(3)

Telehealth Care(1)

Artificial Intelligence(103)

Bitcoin(7)

Blockchain(14)

Cognitive Computing(7)

Computer Vision(6)

Data Science(14)

FinTech(41)

Intelligent Automation(26)

Machine Learning(45)

Natural Language Processing(12)

5 Deep Learning Use Cases for the Insurance Industry

4 minutes, 9 seconds read

In 2010, with the launch of the Image Net Competition, a vast dataset of about 14 million labeled images was made open-source to inspire the development of cutting-edge image classifiers. This was when Deep Learning technology got its a real breakthrough and since then there’s been no looking back for advancements in this field.

Different industries are actively using Deep Learning for object detection, features tagging, image analysis, sentiment analysis, and processing data at extremely high speeds. The bigger benefit that differentiates Deep Learning from other AI and ML technologies is the ability to train vast amounts of unstructured data in near real-time. Organizations with a strong focus on data are already about 1.5 times more likely to invest in Deep Learning for actionable insights — Forrester Predicts.

What makes Deep Learning Technology so sought after?

Let’s take a look at 5 Deep Learning use cases from an insurance perspective.

5 Noteworthy Deep Learning Use Cases in Insurance

Deep Learning (DL) is a branch of Machine Learning, which is based on artificial neural networks. DL techniques are specifically useful for determining patterns in large unstructured data. It is highly beneficial for assessing damages during an accident, identifying anomalies in billing, etc. that can eventually help in fraud detection and better customer experiences.

The insurance industry can leverage Deep Learning technology to improve service, automation, and scale of operations. 

1. Property analysis

Typically, insurers analyze a property only once before quoting an insurance premium. However, a customer may remodel the property, for instance, install a swimming pool. 

Under such instances, Insurers can proactively modify the insurance coverage with the help of deep learning technology. In fact, with DL technology, Insurers can help their customers with predictive maintenance, fault analysis, and real-time support. 

For example, Enodo provides underwriting for multifamily properties. It allows users to analyze historical rent, concession data, and market values. Such data-driven tools are also a great aid for insurers.

2. Personalized offers

Insurers are seeking different ways to enhance the customer experience. Deep Learning can vividly improve interaction experiences at different customer touch-points. Take for instance — marketing outreach. Through personalized recommendations and dynamic remarketing strategies, insurers can achieve better conversions. McKinsey states that personalization can reduce customer acquisition costs by up to 50%

At the core of these strategies lies Deep Learning technology. DL technology can make logical classifications of unstructured data through unsupervised learning. We’ve already seen product recommendations based on our own preferences, browsing/search patterns, and peers’ interests. The same applies to the insurance industry, especially when insurers endeavor profits through bite-size and on-demand insurance products.  

3. Pricing/Actuarial analysis

Actuarial analysis and evaluation are both time-consuming and error-prone processes. Insurers can considerably improve policy pricing through automated reasoning. Deep Learning techniques combine statistics, finance, business, and case-based reasoning and can assist actuaries in better risk assessments. Accenture reports — Insurers are leveraging machine learning for underwriting in P&C (56%) and life (39%) insurance sectors

  1. Explainable AI (XAI) is capable of adopting and implementing AI across all capacities of the actuarial profession. 
  2. Pattern recognition from historical data can help assess the risk and understand the market better.
  3. Deep Learning can help in pragmatic actuarial solutions to make effective decisions on large actuarial data sets.

4. Deep Learning Use Cases in Fraud Detection

In Norway alone in 2019, there were 827 proven fraud cases, which could have caused a loss of over €11 million to insurers.

Insurance fraud usually occurs in the form of claims. A claimant can fake the identity, duplicate claims, overstate repair costs, and submit false medical receipts and bills. Mostly because of disconnected information sources, Insurers fall victim to fraudulent activities from customers. Now, here’s the challenge. How to unify different data sources, which, to date, even include offline receipts and manually scanned documents. 

Deep Learning can help in fraud detection by-

  • Finding hidden/implicit correlations in data.
  • Facial recognition, sentiment analysis on submitted claims application.
  • Supervised learning to train the fraud detection models using labeled historical data.
  • Eliminating the time lag in the verification of documents, which raises the potential for data breaching.

5. Claims

Deep Learning incorporates two-fold benefits to insurers in terms of claims. One — with a connected information ecosystem, it helps insurers with faster claims settlement (thus, customer experience as well). Two, deep learning predictive models can equip insurers with a better understanding of claims cost. 

For example, Tokio Marine — the largest P&C insurance group in Japan uses a cloud-based document processing system to process handwritten claims from the time of the first intimation. Many insurers are looking forward to end-to-end claims processing systems with deep learning and other AI capabilities. 

The Crux

Today, Deep Learning technology is able to mimic an infant’s brain. The research is on for developing new neural network architectures (e.g. Siamese Network, OpenAI’s GPT-2 Model, etc.) that will be capable of performing complex functionalities of a mature human brain. Deep Learning technology, in the near future, will be leading the development of cognition-based insurance systems.

Also read — The Cognitive Cloud Insurer is Next!

Cancel

Knowledge thats worth delivered in your inbox

Enhancing digital patient experience with healthcare chatbots

5 minutes read

Chatbots are fast emerging at the forefront of user engagement across industries. In 2021, healthcare is undoubtedly being touted as one of the most important industries due to the noticeable surge in demand amid the pandemic and its subsequent waves. The Global Healthcare Chatbots Market is expected to exceed over US$ 314.63 Million by 2024 at a CAGR of 20.58%.

Chatbots are being seen as those with high potential to revolutionize healthcare. They act as the perfect support system to agents on the floor by providing the first-step resolution to the customer, in terms of understanding intent and need, boost efficiency, and also improve the accuracy of symptom detection and ailment identification, preventive care, feedback procedures, claim filing and processing and more.

At the outset of the COVID-19 pandemic, digital tools in healthcare, most commonly chatbots, rose to the forefront of healthcare solutions. Providence St. Joseph Health, Mass General Brigham, Care Health Insurance (formerly Religare), and several other notable names built and rolled out artificial intelligence-based chatbots to help with diagnostics at the first stage before a human-human virtual contact, especially while differentiating between possible COVID-19 cases and other ailments. The CDC also hosts an AI-driven chatbot on its website to help screen for coronavirus infections. Similarly, the World Health Organization (WHO) partnered with a messaging app named Ratuken Viber, to develop an interactive chatbot for accurate information about COVID-19 in multiple languages. This allowed WHO to reach up to 1 billion people located anywhere in the world, at any time of the day, in their respective native languages.

For Care Health Insurance, Mantra Labs deployed their Conversational AI Chatbot with AR-based virtual support, called Hitee, trained to converse in multiple languages. This led to 10X interactions over the previous basic chatbot; 5X more conversions through Vanilla Web Experience; Drop-in Customer Queries over Voice Support by 20% among other benefits.

Artificial Intelligence’s role in the healthcare industry has been growing strength by strength over the years. According to the global tech market advisory firm ABI Research, AI spending in the healthcare and pharmaceutical industries is expected to increase from $463 million in 2019 to more than $2 billion over the next 5 years, healthtechmagazine.net has reported. 

Speaking of key features available on a healthcare chatbot, Anonymity; Monitoring; Personalization; collecting Physical vitals (including oxygenation, heart rhythm, body temperature) via mobile sensors; monitoring patient behavior via facial recognition; Real-time interaction; and Scalability, feature top of the list. 

However, while covering the wide gamut of a healthcare bot’s capabilities, it is trained on the following factors to come in handy on a business or human-need basis. Read on: 

Remote, Virtual Consults 

Chatbots were seen surging exponentially in the year 2016, however, the year 2020 and onwards brought back the possibility of adding on to healthcare bot capabilities as people continued to stay home amid the COVID-19 pandemic and subsequent lockdowns. Chatbots work as the frontline customer support for Quick Symptom Assessment where the intent is understood and a patient’s queries are answered, including connection with an agent for follow-up service, Booking an Appointment with doctors, and more. 

Mental Health Therapy

Even though anxiety, depression, and other mental health-related disorders and their subsequent awareness have been the talk around the world, even before the pandemic hit, the pandemic year, once again could be attributed to increased use of bots to seek support or a conversation to work through their anxiety and more amid trying times. The popular apps, Woebot and Wysa, both gained popularity and recognition during the previous months as a go-to Wellness Advisor. 

An AI Wellness Advisor can also take the form of a chatbot that sends regular reminders on meal and water consumption timings, nutrition charts including requisite consultation with nutritionists, lifestyle advice, and more. 

Patient Health Monitoring via wearables 

Wearable technologies like wearable heart monitors, Bluetooth-enabled scales, glucose monitors, skin patches, shoes, belts, or maternity care trackers promise to redefine assessment of health behaviors in a non-invasive manner and helps acquire, transmit, process, and store patient data, thereby making it a breeze for clinicians to retrieve it as and when they need it.

Remote patient monitoring devices also enable patients to share updates on their vitals and their environment from the convenience and comfort of home, a feature that’s gained higher popularity amid the pandemic.

A healthcare chatbot for healthcare has the capability to check existing insurance coverage, help file claims and track the status of claims. 

What’s in store for the future of chatbots in Healthcare? 

The three main areas where healthcare chatbots can be particularly useful include timely health diagnostics, patient engagement outside medical facilities, and mental health care. 

According to Gartner, conversational AI will supersede cloud and mobile as the most important imperative for the next ten years. 

“For AI to succeed in healthcare over the long-term, consumer comfort and confidence should be front and center. Leveraging AI behind the scenes or in supporting roles could collectively ease us into understanding its value without risking alienation,” reads a May 2021 Forbes article titled, The Doctor Is In: Three Predictions For The Future Of AI In Healthcare. 

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
bot

May i help you?

bot shadow