10%

Try : Insurtech, Application Development

Edtech(5)

Events(34)

Interviews(10)

Life@mantra(11)

Logistics(1)

Strategy(14)

Testing(8)

Android(45)

Backend(29)

Dev Ops(2)

Enterprise Solution(22)

Frontend(28)

iOS(40)

Javascript(13)

Augmented Reality(17)

Customer Journey(12)

Design(13)

User Experience(34)

AI in Insurance(31)

Insurtech(59)

Product Innovation(37)

Solutions(15)

E-health(3)

HealthTech(8)

mHealth(3)

Telehealth Care(1)

Telemedicine(1)

Artificial Intelligence(109)

Bitcoin(7)

Blockchain(18)

Cognitive Computing(7)

Computer Vision(8)

Data Science(14)

FinTech(44)

Intelligent Automation(26)

Machine Learning(46)

Natural Language Processing(13)

5 Deep Learning Use Cases for the Insurance Industry

4 minutes, 9 seconds read

In 2010, with the launch of the Image Net Competition, a vast dataset of about 14 million labeled images was made open-source to inspire the development of cutting-edge image classifiers. This was when Deep Learning technology got its a real breakthrough and since then there’s been no looking back for advancements in this field.

Different industries are actively using Deep Learning for object detection, features tagging, image analysis, sentiment analysis, and processing data at extremely high speeds. The bigger benefit that differentiates Deep Learning from other AI and ML technologies is the ability to train vast amounts of unstructured data in near real-time. Organizations with a strong focus on data are already about 1.5 times more likely to invest in Deep Learning for actionable insights — Forrester Predicts.

What makes Deep Learning Technology so sought after?

Let’s take a look at 5 Deep Learning use cases from an insurance perspective.

5 Noteworthy Deep Learning Use Cases in Insurance

Deep Learning (DL) is a branch of Machine Learning, which is based on artificial neural networks. DL techniques are specifically useful for determining patterns in large unstructured data. It is highly beneficial for assessing damages during an accident, identifying anomalies in billing, etc. that can eventually help in fraud detection and better customer experiences.

The insurance industry can leverage Deep Learning technology to improve service, automation, and scale of operations. 

1. Property analysis

Typically, insurers analyze a property only once before quoting an insurance premium. However, a customer may remodel the property, for instance, install a swimming pool. 

Under such instances, Insurers can proactively modify the insurance coverage with the help of deep learning technology. In fact, with DL technology, Insurers can help their customers with predictive maintenance, fault analysis, and real-time support. 

For example, Enodo provides underwriting for multifamily properties. It allows users to analyze historical rent, concession data, and market values. Such data-driven tools are also a great aid for insurers.

2. Personalized offers

Insurers are seeking different ways to enhance the customer experience. Deep Learning can vividly improve interaction experiences at different customer touch-points. Take for instance — marketing outreach. Through personalized recommendations and dynamic remarketing strategies, insurers can achieve better conversions. McKinsey states that personalization can reduce customer acquisition costs by up to 50%

At the core of these strategies lies Deep Learning technology. DL technology can make logical classifications of unstructured data through unsupervised learning. We’ve already seen product recommendations based on our own preferences, browsing/search patterns, and peers’ interests. The same applies to the insurance industry, especially when insurers endeavor profits through bite-size and on-demand insurance products.  

3. Pricing/Actuarial analysis

Actuarial analysis and evaluation are both time-consuming and error-prone processes. Insurers can considerably improve policy pricing through automated reasoning. Deep Learning techniques combine statistics, finance, business, and case-based reasoning and can assist actuaries in better risk assessments. Accenture reports — Insurers are leveraging machine learning for underwriting in P&C (56%) and life (39%) insurance sectors

  1. Explainable AI (XAI) is capable of adopting and implementing AI across all capacities of the actuarial profession. 
  2. Pattern recognition from historical data can help assess the risk and understand the market better.
  3. Deep Learning can help in pragmatic actuarial solutions to make effective decisions on large actuarial data sets.

4. Deep Learning Use Cases in Fraud Detection

In Norway alone in 2019, there were 827 proven fraud cases, which could have caused a loss of over €11 million to insurers.

Insurance fraud usually occurs in the form of claims. A claimant can fake the identity, duplicate claims, overstate repair costs, and submit false medical receipts and bills. Mostly because of disconnected information sources, Insurers fall victim to fraudulent activities from customers. Now, here’s the challenge. How to unify different data sources, which, to date, even include offline receipts and manually scanned documents. 

Deep Learning can help in fraud detection by-

  • Finding hidden/implicit correlations in data.
  • Facial recognition, sentiment analysis on submitted claims application.
  • Supervised learning to train the fraud detection models using labeled historical data.
  • Eliminating the time lag in the verification of documents, which raises the potential for data breaching.

5. Claims

Deep Learning incorporates two-fold benefits to insurers in terms of claims. One — with a connected information ecosystem, it helps insurers with faster claims settlement (thus, customer experience as well). Two, deep learning predictive models can equip insurers with a better understanding of claims cost. 

For example, Tokio Marine — the largest P&C insurance group in Japan uses a cloud-based document processing system to process handwritten claims from the time of the first intimation. Many insurers are looking forward to end-to-end claims processing systems with deep learning and other AI capabilities. 

The Crux

Today, Deep Learning technology is able to mimic an infant’s brain. The research is on for developing new neural network architectures (e.g. Siamese Network, OpenAI’s GPT-2 Model, etc.) that will be capable of performing complex functionalities of a mature human brain. Deep Learning technology, in the near future, will be leading the development of cognition-based insurance systems.

Also read — The Cognitive Cloud Insurer is Next!

Cancel

Knowledge thats worth delivered in your inbox

Implementing a Clean Architecture with Nest.JS

4 minutes read

This article is for enthusiasts who strive to write clean, scalable, and more importantly refactorable code. It will give an idea about how Nest.JS can help us write clean code and what underlying architecture it uses.

Implementing a clean architecture with Nest.JS will require us to first comprehend what this framework is and how it works.

What is Nest.JS?

Nest or Nest.JS is a framework for building efficient, scalable Node.js applications (server-side) built with TypeScript. It uses Express or Fastify and allows a level of abstraction to enable developers to use an ample amount of modules (third-party) within their code.

Let’s dig deeper into what is this clean architecture all about. 

Well, you all might have used or at least heard of MVC architecture. MVC stands for Model, View, Controller. The idea behind this is to separate our project structure into 3 different sections.

1. Model: It will contain the Object file which maps with Relation/Documents in the DB.

2. Controller: It is the request handler and is responsible for the business logic implementation and all the data manipulation.

3. View: This part will contain files that are concerned with the displaying of the data, either HTML files or some templating engine files.

To create a model, we need some kind of ORM/ODM tool/module/library to build it with. For instance, if you directly use the module, let’s say ‘sequelize’, and then use the same to implement login in your controller and make your core business logic dependent upon the ‘sequelize’. Now, down the line, let’s say after 10 years, there is a better tool in the market that you want to use, but as soon as you replace sequelize with it, you will have to change lots of lines of code to prevent it from breaking. Also, you’ll have to test all the features once again to check if it’s deployed successfully or not which may waste valuable time and resource as well. To overcome this challenge, we can use the last principle of SOLID which is the Dependency Inversion Principle, and a technique called dependency injection to avoid such a mess.

Still confused? Let me explain in detail.

So, what Dependency Inversion Principle says in simple words is, you create your core business logic and then build dependency around it. In other words, free your core logic and business rules from any kind of dependency and modify the outer layers in such a way that they are dependent on your core logic instead of your logic dependent on this. That’s what clean architecture is. It takes out the dependency from your core business logic and builds the system around it in such a way that they seem to be dependent on it rather than it being dependent on them.

Let’s try to understand this with the below diagram.

Source: Clean Architecture Cone 

You can see that we have divided our architecture into 4 layers:

1. Entities: At its core, entities are the models(Enterprise rules) that define your enterprise rules and tell what the application is about. This layer will hardly change over time and is usually abstract and not accessible directly. For eg., every application has a ‘user’. What all fields the user should store, their types, and relations with other entities will comprise an Entity.

2. Use cases: It tells us how can we implement the enterprise rules. Let’s take the example of the user again. Now we know what data to be operated upon, the use case tells us how to operate upon this data, like the user will have a password that needs to be encrypted, the user needs to be created, and the password can be changed at any given point of time, etc.

3. Controllers/Gateways: These are channels that help us to implement the use cases using external tools and libraries using dependency injection.

4. External Tools: All the tools and libraries we use to build our logic will come under this layer eg. ORM, Emailer, Encryption, etc.

The tools we use will be depending upon how we channel them to use cases and in turn, use cases will depend upon the entities which is the core of our business. This way we have inverted the dependency from outwards to inwards. That’s what the Dependency Inversion Principal of SOLID implies.

Okay, by now, you got the gist of Nest.JS and understood how clean architecture works. Now the question arises, how these two are related?  

Let’s try to understand what are the 3 building blocks of Nest.JS and what each of them does.

  1. Modules: Nest.JS is structured in such a way that we can treat each feature as a module. For eg., anything which is linked with the User such as models, controllers, DTOs, interfaces, etc., can be separated as a module. A module has a controller and a bunch of providers which are injectible functionalities like services, orm, emailer, etc.
  1. Controllers: Controllers in Nest.JS are interfaces between the network and your logic. They are used to handle requests and return responses to the client side of the application (for example, call to the API).
  1. Providers (Services): Providers are injectable services/functionalities which we can inject into controllers and other providers to provide flexibility and extra functionality. They abstract any form of complexity and logic.

To summarize,

  • We have controllers that act as interfaces (3rd layer of clean architecture)
  • We have providers which can be injected to provide functionality (4th layer of clean architecture: DB, Devices, etc.)
  • We can also create services and repositories to define our use case (2nd Layer)
  • We can define our entities using DB providers (1st Layer)

Conclusion:

Nest.JS is a powerful Node.JS framework and the most well-known typescript available today. Now that you’ve got the lowdown on this framework, you must be wondering if we can use it to build a project structure with a clean architecture. Well, the answer is -Yes! Absolutely. How? I’ll explain in the next series of this article. 

Till then, Stay tuned!

About the Author:

Junaid Bhat is currently working as a Tech Lead in Mantra Labs. He is a tech enthusiast striving to become a better engineer every day by following industry standards and aligned towards a more structured approach to problem-solving. 


Read our latest blog: Golang-Beego Framework and its Applications

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top