Astronaut loading animation Circular loading bar

Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(7)

Customer Journey(16)

Design(39)

Solar Industry(7)

User Experience(62)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(17)

Testing(9)

Android(48)

Backend(32)

Dev Ops(8)

Enterprise Solution(28)

Technology Modernization(4)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(36)

Insurtech(63)

Product Innovation(54)

Solutions(21)

E-health(11)

HealthTech(23)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(139)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(17)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

Hello World but in VR

By :

The mission was simple- create some interactive objects and also a futuristic environment. I stood at the crossroads, uncertain where to begin, so the first thing that I did was open YouTube and type-” how to build your first game in VR”. After watching a couple of videos, one thing was definite-” Oculus “. Oculus is the hardware used for most VR applications. So, I went ahead and placed an order for the Oculus which took around 15 days to get delivered. The unboxing felt like I had the key to the future, and now what? I ended up playing some games to understand how VR works and also just playing games.


Imagination part I

Then, I got a call from my manager-” Vignesh, Where is my metaverse?” 

The burgeoning weight of expectations compelled me to set aside gaming and delve into development. So, hopped onto my laptop which at times was a little specced out. Nevertheless, I started to do some research on how to build VR apps on YouTube, Oculus development page, Unity development page, and a few others. The information was quite overwhelming at the beginning and most of it bounced over my head. Took some time to understand the terminologies used in game engines, effective workflows, and finally how to import 3D models from Blender. I made some test Models in Blender with some free source files “sketchfab.com” because that was the fastest way to run a trial in Unity and Blender. Once I got the free resources, I tried to export it to Unity but for some reason, it was not working. So you guessed it right, YouTube became my refuge, and YES I found the solution. The feeling of successfully importing the 3D file to Unity was like I had accomplished 70% of the task but in reality, it was just 10%. There were a lot more things to figure out, like UV unwrapping, texturing, baking, emission materials, and baking animation which I still need to discover. A month’s time had already passed and I had made no major progress just as I grappled with this, a message from my manager appeared:“ Vignesh, when can I see the metaverse??”



Imagination part II

This is when I realized I needed to learn faster and work more efficiently and by chance I ended up on this amazing YouTube channel called Dilmer Valecillos where he teaches and explains VR development fundamentals and also shares the source code for some tutorials. That’s when I came across Oculus Interaction SDK. SDK (Software development kit) is a framework which apps and software are built upon. Thankfully Oculus development site provides their SDK which helps to develop games for Oculus. Having all the necessary knowledge and resources for development, I began to create 3D models in Blender, import them to Unity, and use the interaction SDK to make the models interactable. 

ALL was fine until I had to install the game into Oculus. The game would simply not install on Oculus. So I did some research and found that I had to change some settings in Unity for it to install.

Finally, I donned the Oculus on eagerly waiting for the game to start, when the loading screen disappeared I could see the environment created in VR but I wasn’t able to move or interact with the objects. This was a huge setback after spending nearly 4 months learning different tools and software needed for the development.


OK! Reality

This setback ushered in introspection and I realized my focus was not on learning the software extensively so, made a plan with the guidance of my manager to focus on one tool at a time and to understand it at the fundamental level. The tools were Blender and Unity, I previously had some experience in 3D so Blender was a bit easier to learn compared to Unity which has coding and I don’t know how to code. The fear of coding was hindering my learning curve in Unity but I figured not everything requires coding. Also, my fellow colleague was kind enough to help me out with coding. We decided that I would be focusing on creating 3D environments and some basic interaction on Unity and Rabi would do the coding. So, we set sail and within a few weeks we were ready to finally show the prototype to our manager. We tried our best to get it as expected but it was far from that and it needed more creative inputs, quality renders, and intuitive interactions. These were a few key pieces of feedback we got from presenting the prototype to the manager.

These experiences will undoubtedly shape my growth as a VR developer and provide valuable insights that extend beyond the world of virtual reality. I hope it resonates with many aspiring people who venture into the world of virtual reality.

P.S. The Project Metaverse is still ongoing.

About the Author: Vignesh is a creative visual designer and quirky art director! With a heart full of innovation, he crafts designs that tell vibrant stories and leave lasting impressions. Beyond design, he’s an adrenaline junkie seeking excitement in life.

Cancel

Knowledge thats worth delivered in your inbox

Platform Engineering: Accelerating Development and Deployment

The software development landscape is evolving rapidly, demanding unprecedented levels of speed, quality, and efficiency. To keep pace, organizations are turning to platform engineering. This innovative approach empowers development teams by providing a self-service platform that automates and streamlines infrastructure provisioning, deployment pipelines, and security. By bridging the gap between development and operations, platform engineering fosters standardization, and collaboration, accelerates time-to-market, and ensures the delivery of secure and high-quality software products. Let’s dive into how platform engineering can revolutionize your software delivery lifecycle.

The Rise of Platform Engineering

The rise of DevOps marked a significant shift in software development, bringing together development and operations teams for faster and more reliable deployments. As the complexity of applications and infrastructure grew, DevOps teams often found themselves overwhelmed with managing both code and infrastructure.

Platform engineering offers a solution by creating a dedicated team focused on building and maintaining a self-service platform for application development. By standardizing tools and processes, it reduces cognitive overload, improves efficiency, and accelerates time-to-market.  

Platform engineers are the architects of the developer experience. They curate a set of tools and best practices, such as Kubernetes, Jenkins, Terraform, and cloud platforms, to create a self-service environment. This empowers developers to innovate while ensuring adherence to security and compliance standards.

Role of DevOps and Cloud Engineers

Platform engineering reshapes the traditional development landscape. While platform teams focus on building and managing self-service infrastructure, application teams handle the development of software. To bridge this gap and optimize workflows, DevOps engineers become essential on both sides.

Platform and cloud engineering are distinct but complementary disciplines. Cloud engineers are the architects of cloud infrastructure, managing services, migrations, and cost optimization. On the other hand, platform engineers build upon this foundation, crafting internal developer platforms that abstract away cloud complexity.

Key Features of Platform Engineering:

Let’s dissect the core features that make platform engineering a game-changer for software development:

Abstraction and User-Friendly Platforms: 

An internal developer platform (IDP) is a one-stop shop for developers. This platform provides a user-friendly interface that abstracts away the complexities of the underlying infrastructure. Developers can focus on their core strength – building great applications – instead of wrestling with arcane tools. 

But it gets better. Platform engineering empowers teams through self-service capabilities.This not only reduces dependency on other teams but also accelerates workflows and boosts overall developer productivity.

Collaboration and Standardization

Close collaboration with application teams helps identify bottlenecks and smooth integration and fosters a trust-based environment where communication flows freely.

Standardization takes center stage here. Equipping teams with a consistent set of tools for automation, deployment, and secret management ensures consistency and security. 

Identifying the Current State

Before building a platform, it’s crucial to understand the existing technology landscape used by product teams. This involves performing a thorough audit of the tools currently in use, analyzing how teams leverage them, and identifying gaps where new solutions are needed. This ensures the platform we build addresses real-world needs effectively.

Security

Platform engineering prioritizes security by implementing mechanisms for managing secrets such as encrypted storage solutions. The platform adheres to industry best practices, including regular security audits, continuous vulnerability monitoring, and enforcing strict access controls. This relentless vigilance ensures all tools and processes are secure and compliant.

The Platform Engineer’s Toolkit For Building Better Software Delivery Pipelines

Platform engineering is all about streamlining and automating critical processes to empower your development teams. But how exactly does it achieve this? Let’s explore the essential tools that platform engineers rely on:

Building Automation Powerhouses:

Infrastructure as Code (IaC):

CI/CD Pipelines:

Tools like Jenkins and GitLab CI/CD are essential for automating testing and deployment processes, ensuring applications are built, tested, and delivered with speed and reliability.

Maintaining Observability:

Monitoring and Alerting:

Prometheus and Grafana is a powerful duo that provides comprehensive monitoring capabilities. Prometheus scrapes applications for valuable metrics, while Grafana transforms this data into easy-to-understand visualizations for troubleshooting and performance analysis.

All-in-one Monitoring Solutions:

Tools like New Relic and Datadog offer a broader feature set, including application performance monitoring (APM), log management, and real-time analytics. These platforms help teams to identify and resolve issues before they impact users proactively.

Site Reliability Tools To Ensure High Availability and Scalability:

Container Orchestration:

Kubernetes orchestrates and manages container deployments, guaranteeing high availability and seamless scaling for your applications.

Log Management and Analysis:

The ELK Stack (Elasticsearch, Logstash, Kibana) is the go-to tool for log aggregation and analysis. It provides valuable insights into system behavior and performance, allowing teams to maintain consistent and reliable operations.

Managing Infrastructure

Secret Management:

HashiCorp Vault protects secretes, centralizes, and manages sensitive data like passwords and API keys, ensuring security and compliance within your infrastructure.

Cloud Resource Management:

Tools like AWS CloudFormation and Azure Resource Manager streamline cloud deployments. They automate the creation and management of cloud resources, keeping your infrastructure scalable, secure, and easy to manage. These tools collectively ensure that platform engineering can handle automation scripts, monitor applications, maintain site reliability, and manage infrastructure smoothly.

The Future is AI-Powered:

The platform engineering landscape is constantly evolving, and AI is rapidly transforming how we build and manage software delivery pipelines. The tools like Terraform, Kubecost, Jenkins X, and New Relic AI facilitate AI capabilities like:

  • Enhance security
  • Predict infrastructure requirements
  • Optimize resource security 
  • Predictive maintenance
  • Optimize monitoring process and cost

Conclusion

Platform engineering is becoming the cornerstone of modern software development. Gartner estimates that by 2026, 80% of development companies will have internal platform services and teams to improve development efficiency. This surge underscores the critical role platform engineering plays in accelerating software delivery and gaining a competitive edge.

With a strong foundation in platform engineering, organizations can achieve greater agility, scalability, and efficiency in the ever-changing software landscape. Are you ready to embark on your platform engineering journey?

Building a robust platform requires careful planning, collaboration, and a deep understanding of your team’s needs. At Mantra Labs, we can help you accelerate your software delivery. Connect with us to know more. 

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot