Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(8)

Customer Journey(17)

Design(43)

Solar Industry(8)

User Experience(66)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(10)

Enterprise Solution(28)

Technology Modernization(7)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(57)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(143)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(19)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

LAMP/MEAN Stack: Business and Developer Perspective

Currently, there are more than 1.73 billion active websites in the world, according to Internet Live Stats. Every second a new website is being created. Creating a website seems simple, but launching a website that serves some specific business purpose is tricky. When business owners approach application/web developers, they encounter jargon like LAMP/MEAN, backend/frontend, DevOps, and many more. In such scenarios, a person not accustomed to web development will either go with his instincts or the developer’s instincts or maybe cost.

Growing number of websites.

To avoid such situations here is an easy-to-understand description of the LAMP stack and MEAN stack along with their best use and related FAQs.

What is LAMP Stack?

Lamp Stack is a bundle of web development software – Linux, Apache, MySQL, and PHP. This is the foundational stack where MongoDB and Python can replace MySQL and PHP, respectively.There are four distinct layers under this architecture. Linux is the operating system and all other software applications run on top of this layer. Apache is the web server software responsible for connecting web browsers to the correct website. MySQL is the database to store, retrieve, and update data based on input queries. Finally, PHP is the web programming language. Websites and web applications run on this layer.

The Lamp Stack architecture

What is MEAN Stack?

The MEAN stack comprises MongoDB, ExpressJS, AngularJS, and Node.js. It is an open-source javascript-based software stack useful for developing dynamic web applications. Here, JSON (Javascript Object Notation) storage has completely replaced the database layer. JSON is lightweight, easy to understand, and is widely used for storing and transporting data from server to web page. 

The components of MEAN Stack-

MongoDB is a NoSQL database system. It is a cross-platform, document-oriented database program. Express is a framework to build web applications in Node. AngularJS provides a framework for frontend development with features like two-way data binding. Node.js provides a server-side javascript execution environment. 

The MEAN Stack architecture

LAMP vs MEAN : Which is Better for Startups/Businesses?

LAMP has been in use for decades and many sophisticated applications are built using LAMP stack. MEAN is relatively new, but is considered as one of the best technology stacks for developing mobile applications. However, which one to select totally depends upon the type of web application you want to build. 

LAMPMEAN
ScalabilityLAMP’s limiting factor is MySQL. During more requests, it creates a bottleneck. I.e. if there is high concurrency, MySQL fails to perform. MySQL works well when there’s a low write/read ratio. MEAN scales all the layers of frontend, backend, and database. MongoDB supports auto sharding and auto-failover. When the data on one node exceeds the threshold, MongoDB automatically rearranges the data to evenly distribute the data. 
PerformanceHorizontal scaling is not easy and high transaction loads (millions of read/write) seriously affect the performance.MongoDB is very fast, but it achieves its performance by trading off consistency (in clustered setups). Thus, MongoDB is great when you need speed and flexibility in your model and can accept minor (and relatively infrequent) data loss.
SecurityLAMP is a secure and stable platform. However, because of different client and server codebases, security is uncompromised in LAMP.MEAN is a secure and stable platform.
PrivacyLAMP applications are mostly native. Therefore, there are negligible privacy issues.Because of privacy concerns, many users disable javascript on their browser. This might break a MEAN application, since it is completely dependent on Javascript.
For example, apps like facebook cannot function properly if the user has disabled the javascript.
DevelopmentYou might require a full-stack developers team for developing an application on LAMP. For instance, you’ll need a javascript expert for frontend and PHP/Perl/Python expert for the backend. LAMP also features multiple layers of navigation with various configuration files and differing syntax.A team of javascript experts can develop end-to-end applications on MEAN.
CostLAMP might cost you more as it requires different specialists for frontend and backend development.Application development in MEAN is cheaper as you won’t need different specialists.However, the cost depends on the complexity of the project.

In short, LAMP is best for developing APIs, simple websites, and e-commerce sites. Whereas MEAN is most suitable for Tech-heavy startups, GUI focused Apps and developer teams who are proficient in javascript only.

LAMP/MEAN : What Developers Prefer?

For web applications, there are full-stack developers and MEAN stack developers. Developing an application in LAMP requires a team of developers knowing different frontend and backend technologies and/or full-stack developers. MEAN stack developers require expertise in javascript and because all other components of MEAN are compatible with JS, it is comparatively easier to develop web and mobile applications. 


LAMPMEAN
Difficulty to learnLAMP or full-stack developers need to be familiar with all the layers of web development. MEAN developers require proficiency in programming techniques like javascript and HTML and knowledge of Node.js, Express, MongoDB, and AngularJS.
TeamsIt can be challenging to switch teams in LAMP. Using javascript for both frontend and backend development provides a homogenous workflow. Thus, teams can switch from frontend to backend development and vice versa easily.
PerformanceDeveloping native applications work well on older browsers and mobile devices.MEAN applications with javascript heavy frontend might not perform in the second-world countries, where internet speed and devices are not robust.
LibrariesLAMP’s library is more mature with a number of functions to make backend development easier. For example, the REST library.
UI
UI-focused apps are easy to build in MEAN and are more intuitive. 
DatabaseYou might face scalability concerns with MySQL database.Although it is fast and capable of dealing with large databases, MongoDB is not the best platform for developing apps with complex transactions. 

Also read – 7 Ways to boost AngularJS applications!

Wrapping Up

MEAN stack mostly includes front end development components while LEAN stack comprises backend tools. You won’t find an operating system reference in MEAN, but, in fact, most MEAN applications are developed on Linux. Thus, we can say — LAMP refers to a more low-level development environment and MEAN to the high-level environment. 

It is also possible to modify the technology stacks in both LAMP and MEAN. For instance, you can use MongoDB or Cassandra with other components of LAMP. Some applications can have both stacks — LAMP for the API and MEAN for GUI. Moreover, both software stacks are compatible with the cloud. Therefore, depending on the project you can choose between the two.

We at Mantra Labs frequently encounter the client’s dilemma regarding the choice of LAMP/MEAN stack. Hopefully, this blog clarifies the myths and mysteries encircling these platforms.

Cancel

Knowledge thats worth delivered in your inbox

What If the Sun Took a Day Off?

By :

Ever wondered what life would be like if the Sun took a day off? Picture waking up to an Earth shrouded in darkness, where temperatures drop dramatically within hours, plunging the planet into an icy chill. Plants, deprived of sunlight, would halt photosynthesis, leading to a food production crisis. Our reliance on renewable energy would face a sudden halt, causing widespread blackouts and chaos in cities across the globe.

A day without the Sun would throw our world into chaos! Luckily, that’s never going to happen (at least in our lifetime!). But this thought experiment underscores the Sun’s critical role in our lives and highlights why harnessing solar energy is so vital. While we’re increasingly turning to solar power, we are still missing out on capturing a massive amount of solar energy that falls on Earth every single day.

How Much Solar Energy Are We Missing Out On?

Every day, the Earth receives about 173,000 terawatts of solar energy from the Sun—more than 10,000 times the world’s total daily energy consumption. Despite this abundance, we only capture a tiny fraction of this energy. In 2023, solar energy accounted for just 4.5% of global electricity generation—a huge opportunity waiting to be tapped.

If we could capture just a small percentage of the Sun’s energy, we could power the entire world many times over. The total solar energy that hits the Earth in just one hour could meet the world’s energy needs for a full year. Yet, due to limitations in solar panel deployment, technology efficiency, and energy storage, the vast majority of solar energy goes unused each day.

As we improve solar technology and infrastructure, capturing more of this energy becomes not just a possibility but a necessity for a sustainable future. Let’s dive into how cutting-edge technology is making solar energy more accessible and efficient, helping to turn this untapped potential into real, usable power.

How Tech Makes Solar Adoption Easier

Customer-centric technology is revolutionizing the way we adopt solar energy. Imagine an app that allows you to simply point your smartphone at your house to estimate how many solar panels you need, their ideal placement, and the energy they can generate.

Here are the key benefits of this innovative approach:

  • Precision: By capturing images of your property through satellite, the app calculates the optimal placement of solar panels for maximum energy production. Studies have shown that precise placement can increase efficiency by up to 20%.
  • Customer Engagement: Users receive real-time insights into their energy production, helping them understand their solar power system better, whether they’re using Tesla solar panels, solar power generators, or even solar attic fans to optimize home energy usage
  • Seamless Experience: With user-friendly interfaces, consumers can easily monitor their solar systems remotely and receive updates on their energy output. This accessibility is crucial for encouraging the wider adoption of solar technologies.

The Tech-Driven Shift Toward Sustainability

As solar technology evolves, so do the solar panels themselves. Innovations like Tesla solar roof systems, flexible solar plates, and bifacial panels are redefining what’s possible in renewable energy. Even smaller systems—such as portable solar generators and solar air conditioners—empower homeowners to harness solar power efficiently.

Photovoltaic (PV)  panels, the cornerstone of solar energy, have seen incredible advancements, now boasting efficiencies of up to 22%. This means fewer panels are needed to produce more energy, making solar energy more effective for a wide range of applications, from solar shingles to off-grid systems.

Moreover, the push towards cradle-to-cradle sustainability is reshaping the industry. New solar panels are being designed with recyclability in mind, reducing their environmental footprint. Innovations in recycling technology now recover up to 95% of materials from end-of-life panels, ensuring that even the oldest solar systems contribute to a greener future.

While solar technology continues to advance, solar panels themselves are becoming more efficient and environmentally sustainable. Innovations such as systems, flexible solar plates, and bifacial solar panels are pushing the boundaries of what’s possible in renewable energy. Even smaller systems like portable solar generators and solar air conditioners are empowering homeowners to tap into the power of the Sun efficiently and sustainably.  Photovoltaic (PV) panels, the cornerstone of solar energy – now boast efficiencies of up to 22%​. This means a smaller array of solar panels for home or commercial use can generate more electricity. This makes solar energy systems more appealing and effective for various applications, from solar roof shingles to off-grid solar systems.

Moreover, the move toward cradle-to-cradle sustainability—where solar panels are built from materials that can be easily recycled—has gained traction. This reduces the environmental footprint even further. Innovations in recycling can recover up to 95% of materials from end-of-life panels, According to PV Cycle​, with room for improvement in recycling.

Making Solar Affordable and Accessible

Historically, one of the biggest barriers to solar adoption has been the cost. But things are changing fast. Innovations in financing models, such as Power Purchase Agreements (PPAs) and solar loans, have significantly reduced the financial burden of installing solar systems. According to the Solar Energy Industries Association (SEIA), the average cost of solar installation has dropped by over 70% in the last decade.

Couple that with federal and state incentives like the Investment Tax Credit (ITC), which provides a 30% tax credit on solar installations, and solar energy is more affordable than ever. Net metering programs, which allow homeowners to sell excess energy back to the grid, further enhance savings, making solar not only accessible but also financially rewarding.

Conclusion

The future of solar energy goes far beyond rooftop panels—it’s about making the entire solar experience intuitive, accessible, and sustainable. With smart apps and tech-driven tools, consumers can now manage their solar energy systems with just a few taps on their phones, making the shift to green energy simpler and more engaging.

At Mantra Labs, we’re at the forefront of this solar revolution. We’ve helped some of the world’s largest solar providers develop cutting-edge, customer-friendly solutions. Our mobile apps allow users to estimate solar panel needs, monitor system performance, and even track their environmental impact—all from the convenience of their smartphone.

Together, with innovative tech and a commitment to sustainability, we’re building a future where solar energy isn’t just an option—it’s the smarter, more accessible, and greener solution for everyone.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot