Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Manufacturing(3)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(32)

Technology Modernization(8)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(58)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(150)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

The Role of Generative AI in Healthcare

Artificial intelligence (AI) is transforming the healthcare industry in various ways, from improving diagnosis and treatment to enhancing patient experience and reducing costs. One of the most promising and innovative branches of AI is generative AI. 

Generative AI uses deep learning models, such as generative adversarial networks (GANs) or large language models (LLMs), to learn from extensive data and produce realistic and diverse outputs.

According to a report by Market.us, the global Gen-AI in healthcare market size was valued at USD 1.2 billion in 2022 and is expected to reach USD 8.9 billion by 2032, growing at a CAGR of 22.7% during the forecast period. 

Given the broad focus, this emerging technology has enormous potential to revolutionize healthcare in unprecedented ways, but it also poses some challenges and risks that need to be addressed.

What are the applications of generative AI in healthcare?

Generative AI has many potential applications in healthcare, such as:

• Data augmentation: Firms can create synthetic data that can augment the existing data and improve the performance and accuracy of other AI models. For example, creating synthetic medical images that can help train diagnostic or predictive models with more data and diversity. 

American healthcare company, CloudMedX is a computing platform that improves patient outcomes using predictive analytics. It uses AI to collect data and build holistic pictures of individuals and communities. Its single, unified data platform has operational, clinical, and financial functions, meaning healthcare providers can find everything they need in one place. 

The company’s predictive healthcare models can predict disease progression and determine the likelihoods that patients may have complications by processing medical data and providing risk assessment scores. 

• Data privacy: Using generative AI, healthcare companies can create anonymized data to protect patients’ and providers’ privacy and security. For example, synthetic patient records can be used for research or analysis without revealing actual patients’ identities or sensitive information.

• Data generation: We can create new data or content that can provide insights or solutions for healthcare problems. For example, USA-based startup Persado uses generative AI to create personalized and persuasive content for healthcare communication and engagement. Their digital solutions, Persad PerScribed and Persado Motivation AI Platform have helped healthcare companies, insurers, and retail clinics conduct effective campaigns. 

• Data enhancement: Generative AI can enhance the existing data or content by adding more details or quality. For example, the tech can help respond to patient queries better. Google DeepMind has developed MedPaLM, a large language model (LLM) trained on medical datasets that can respond to healthcare queries. 

Nuance Communications, a technology provider of advanced conversational AI for ambient clinical documentation and decision support through voice biometrics; and specialized ambient sensing hardware, leverages Open AI’s Chat GPT to enhance customer responses and manage administrative tasks. 

Data synthesis: Generative AI can synthesize different data or content types to create a comprehensive and coherent output. AI-based firm Zebra Medical Vision has developed more than 11 algorithms to help medical professionals detect diseases better. Their HealthMammo tool is trained on over 350,000 mammogram reports and detects cancer with a 92% success rate compared to 87% among radiologists.

What are the challenges and risks of generative AI in healthcare?

Generative AI is still an evolving technology that faces some challenges and risks, such as:

• Quality and reliability: Generative AI may produce inaccurate or unrealistic outputs that may mislead or harm users. For example, it may generate false medical information that may affect diagnosis or treatment decisions or generate fake medical images that may violate ethical standards.

• Regulation and governance: There may be a lack of clear rules or guidelines for its development and use in healthcare. For example, there may be questions about accountability, transparency, explainability, fairness, and safety in healthcare settings.

• Ethics and trust: Given the lack of human touch, generative AI may pose ethical and social issues that may affect the trust and acceptance of users. The digital products using it creates may generate harmful or offensive content that affects public health in a worst-case scenario.

Conclusion

Generative AI is a rapidly evolving ecosystem of tools that holds enormous promise for healthcare. It can address some healthcare challenges, such as pandemics, chronic diseases, staff shortages, and administrative burdens. However, the technology also comes with its own challenges and risks that must be carefully considered and managed. Therefore, it is essential to develop trustworthy and responsible generative AI systems that can benefit healthcare without compromising its quality and integrity.

Cancel

Knowledge thats worth delivered in your inbox

The Future-Ready Factory: The Power of Predictive Analytics in Manufacturing

In 1989, a missing $0.50 bolt led to the mid-air explosion of United Airlines Flight 232. The smallest oversight in manufacturing can set off a chain reaction of failures. Now, imagine a factory floor where thousands of components must function flawlessly—what happens if one critical part is about to fail but goes unnoticed? Predictive analytics in manufacturing ensures these unseen risks don’t turn into catastrophic failures by providing foresight into potential breakdowns, supply chain risk analytics, and demand fluctuations—allowing manufacturers to act before issues escalate into costly problems.

Industrial predictive analytics involves using data analysis and machine learning in manufacturing to identify patterns and predict future events related to production processes. By combining historical data, machine learning, and statistical models, manufacturers can derive valuable insights that help them take proactive measures before problems arise.

Beyond just improving efficiency, predictive maintenance in manufacturing is the foundation of proactive risk management, helping manufacturers prevent costly downtime, safety hazards, and supply chain disruptions. By leveraging vast amounts of data, predictive analytics enables manufacturers to anticipate machine failures, optimize production schedules, and enhance overall operational resilience.

But here’s the catch, models that predict failures today might not be necessarily effective tomorrow. And that’s where the real challenge begins.

Why Predictive Analytics Models Need Retraining?

Predictive analytics in manufacturing relies on historical data and machine learning to foresee potential failures. However, manufacturing environments are dynamic, machines degrade, processes evolve, supply chains shift, and external forces such as weather and geopolitics play a bigger role than ever before.

Without continuous model retraining, predictive models lose their accuracy. A recent study found that 91% of data-driven manufacturing models degrade over time due to data drift, requiring periodic updates to remain effective. Manufacturers relying on outdated models risk making decisions based on obsolete insights, potentially leading to catastrophic failures.

The key is in retraining models with the right data, data that reflects not just what has happened but what could happen next. This is where integrating external data sources becomes crucial.

Is Integrating External Data Sources Crucial?

Traditional smart manufacturing solutions primarily analyze in-house data: machine performance metrics, maintenance logs, and operational statistics. While valuable, this approach is limited. The real breakthroughs happen when manufacturers incorporate external data sources into their predictive models:

  • Weather Patterns: Extreme weather conditions have caused billions in manufacturing risk management losses. For example, the 2021 Texas power crisis disrupted semiconductor production globally. By integrating weather data, manufacturers can anticipate environmental impacts and adjust operations accordingly.
  • Market Trends: Consumer demand fluctuations impact inventory and supply chains. By leveraging market data, manufacturers can avoid overproduction or stock shortages, optimizing costs and efficiency.
  • Geopolitical Insights: Trade wars, regulatory shifts, and regional conflicts directly impact supply chains. Supply chain risk analytics combined with geopolitical intelligence helps manufacturers foresee disruptions and diversify sourcing strategies proactively.

One such instance is how Mantra Labs helped a telecom company optimize its network by integrating both external and internal data sources. By leveraging external data such as radio site conditions and traffic patterns along with internal performance reports, the company was able to predict future traffic growth and ensure seamless network performance.

The Role of Edge Computing and Real-Time AI

Having the right data is one thing; acting on it in real-time is another. Edge computing in manufacturing processes, data at the source, within the factory floor, eliminating delays and enabling instant decision-making. This is particularly critical for:

  • Hazardous Material Monitoring: Factories dealing with volatile chemicals can detect leaks instantly, preventing disasters.
  • Supply Chain Optimization: Real-time AI can reroute shipments based on live geopolitical updates, avoiding costly delays.
  • Energy Efficiency: Smart grids can dynamically adjust power consumption based on market demand, reducing waste.

Conclusion:

As crucial as predictive analytics is in manufacturing, its true power lies in continuous evolution. A model that predicts failures today might be outdated tomorrow. To stay ahead, manufacturers must adopt a dynamic approach—refining predictive models, integrating external intelligence, and leveraging real-time AI to anticipate and prevent risks before they escalate.

The future of smart manufacturing solutions isn’t just about using predictive analytics—it’s about continuously evolving it. The real question isn’t whether predictive models can help, but whether manufacturers are adapting fast enough to outpace risks in an unpredictable world.

At Mantra Labs, we specialize in building intelligent predictive models that help businesses optimize operations and mitigate risks effectively. From enhancing efficiency to driving innovation, our solutions empower manufacturers to stay ahead of uncertainties. Ready to future-proof your factory? Let’s talk.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot