Astronaut loading animation Circular loading bar

Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(7)

Customer Journey(16)

Design(39)

Solar Industry(7)

User Experience(62)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(17)

Testing(9)

Android(48)

Backend(32)

Dev Ops(8)

Enterprise Solution(28)

Technology Modernization(4)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(36)

Insurtech(63)

Product Innovation(54)

Solutions(21)

E-health(11)

HealthTech(23)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(139)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(17)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

12 Tips To Secure Your Mobile Application

Cyber attacks and data theft have become so common these days especially when it comes to mobile applications. As a result, mobile apps that experience security breaches may suffer financial losses. With many hackers eyeing to steal customer data, securing these applications has become the number one priority for organizations and a serious challenge for developers. According to Gartner’s recent research, Hype Cycle for Application Security, investment in application security will increase by more than two-fold over the next few years, from $6 billion this year to $13.7 billion by 2026. Further, the report stated, “Application security is now top-of-mind for developers and security professionals, and the emphasis is now turning to apps hosted in public clouds,” It is crucial to get the fundamental components of DevOps security correct. Here are the 12 tips to secure your mobile application: 

1. Install apps from trusted sources:

It’s common to have Android applications republished on alternate markets or their APKs & IPAs made available for download. Both APK and IPA may be downloaded and installed from a variety of places, including websites, cloud services, drives, social media, and social networking. Only the Play Store and the App Store should be allowed to install trustworthy APK and IPA files. To prevent utilizing these apps, we should have a source check detection (Play Store or App Store) upon app start.

Also read, https://andresand.medium.com/add-method-to-check-which-app-store-the-android-app-is-installed-from-or-if-its-sideloaded-c9f450a3d069

2. Root Detection:

Android: An attacker could launch a mobile application on a rooted device and access the local memory or call specific activities or intents to perform malicious activities in the application. 

iOS: Applications on a jailbroken device run as root outside of the iOS sandbox. This can allow applications to access sensitive data stored in other apps or install malicious software negating sandboxing functionality. 

More on Root Detection- https://owasp.org/www-project-mobile-top-10/2016-risks/m8-code-tampering

3. Data Storing:

Developers use Shared Preferences & User Defaults to store key-value pairs like tokens, mobile numbers, email, boolean values, etc. Additionally, while creating apps, developers prefer SQLite databases for structured data. It is recommended to store any data in the format of encryption so that it is difficult to extract the information by hackers.

4. Secure Secret Keys:

API keys, passwords, and tokens shouldn’t be hardcoded in the code. It is recommended to use different techniques to store these values so that hackers cannot get away quickly by tampering with the application. 

Here’s a reference link: https://guides.codepath.com/android/Storing-Secret-Keys-in-Android

5. Code Obfuscation

An attacker may decompile the APK file and extract the source code of the application. This may expose sensitive information stored in the source code of the application to the attacker which may be used to perform tailored attacks. 

It is better to obfuscate the source code to prevent all the sensitive information contained in the source code.

6. Secure Communication:

An attacker may perform malicious activities to leverage the level of attacks since all communication is happening over unencrypted channels. So always use HTTPS URLs over HTTP URLs.

7. SSL Pinning:

Certificate pinning allows mobile applications to restrict communication only to servers with a valid certificate matching the expected value (pin). Pinning ensures that no network data is compromised even if a user is tricked into installing a malicious root certificate on their mobile device. Any app that pins its certificates would thwart such phishing attempts by refusing to transmit data over a compromised connection

Please refer: 

https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning

8. Secure API request & response data

The standard practice is to use HTTPS for the baseline protection of REST API calls. The information sent to the server or received from the server may be further encrypted with AES, etc. For example, if there are sensitive contents, you might choose to select those to encrypt so that even if the HTTPS is somehow broken or misconfigured, you have another layer of protection from your encryption.

9. Secure Mobile App Authentication:

In case an application does not assign distinct and complex session tokens after login to a user, an attacker can conduct phishing in order to lure the victim to use a custom-generated token provided by the attacker and easily bypass the login page with the captured session by using a MiTM attack.

i) Assign a distinct and complex session token to a user each time he/she logs on successfully to the application. 

ii) Terminate the session lifetime immediately after logging out. 

iii) Do not use the same session token for two or more IP addresses. 

iv) Limit the expiry time for every session token.

10.  Allow Backup 

Disallow users to back up an app if it contains sensitive data. Having access to backup files (i.e. when android:allowBackup=”true”), it is possible to modify/read the content of an app even on a non-rooted device. So it is recommended to make allow backup false. 

11. Restrict accessing android application screens from other apps

Ideally, your activities should not give any provision to the opening from other services or applications. Make it true only when you have a specific requirement to access your flutter screens from other apps otherwise change to android:exported= ”false”

12. Restrict installing packages from the android application

REQUEST_INSTALL_PACKAGES permission allows apps to install new packages on a user’s device. We are committed to preventing abuse on the Android platform and protecting users from apps that self-update using any method other than Google Play’s update mechanism or download harmful APKs.

Conclusion: 

Mobile Apps have become more personalized than ever before with heaps of customers’ personal data stored in them every day. In order to build trust and loyalty among users and prevent significant financial and credential losses for the companies, it is now crucial to make sure the application is secure for the user. Following the above-mentioned mobile app security checklists will definitely help to prevent hackers from hacking the app.

About the Author:

Raviteja Aketi is a Senior Software Engineer at Mantra Labs. He has extensive experience with B2B projects. Raviteja loves exploring new technologies, watching movies, and spending time with family and friends.

Read our latest blog: Implementing a Clean Architecture with Nest.JS

Cancel

Knowledge thats worth delivered in your inbox

Platform Engineering: Accelerating Development and Deployment

The software development landscape is evolving rapidly, demanding unprecedented levels of speed, quality, and efficiency. To keep pace, organizations are turning to platform engineering. This innovative approach empowers development teams by providing a self-service platform that automates and streamlines infrastructure provisioning, deployment pipelines, and security. By bridging the gap between development and operations, platform engineering fosters standardization, and collaboration, accelerates time-to-market, and ensures the delivery of secure and high-quality software products. Let’s dive into how platform engineering can revolutionize your software delivery lifecycle.

The Rise of Platform Engineering

The rise of DevOps marked a significant shift in software development, bringing together development and operations teams for faster and more reliable deployments. As the complexity of applications and infrastructure grew, DevOps teams often found themselves overwhelmed with managing both code and infrastructure.

Platform engineering offers a solution by creating a dedicated team focused on building and maintaining a self-service platform for application development. By standardizing tools and processes, it reduces cognitive overload, improves efficiency, and accelerates time-to-market.  

Platform engineers are the architects of the developer experience. They curate a set of tools and best practices, such as Kubernetes, Jenkins, Terraform, and cloud platforms, to create a self-service environment. This empowers developers to innovate while ensuring adherence to security and compliance standards.

Role of DevOps and Cloud Engineers

Platform engineering reshapes the traditional development landscape. While platform teams focus on building and managing self-service infrastructure, application teams handle the development of software. To bridge this gap and optimize workflows, DevOps engineers become essential on both sides.

Platform and cloud engineering are distinct but complementary disciplines. Cloud engineers are the architects of cloud infrastructure, managing services, migrations, and cost optimization. On the other hand, platform engineers build upon this foundation, crafting internal developer platforms that abstract away cloud complexity.

Key Features of Platform Engineering:

Let’s dissect the core features that make platform engineering a game-changer for software development:

Abstraction and User-Friendly Platforms: 

An internal developer platform (IDP) is a one-stop shop for developers. This platform provides a user-friendly interface that abstracts away the complexities of the underlying infrastructure. Developers can focus on their core strength – building great applications – instead of wrestling with arcane tools. 

But it gets better. Platform engineering empowers teams through self-service capabilities.This not only reduces dependency on other teams but also accelerates workflows and boosts overall developer productivity.

Collaboration and Standardization

Close collaboration with application teams helps identify bottlenecks and smooth integration and fosters a trust-based environment where communication flows freely.

Standardization takes center stage here. Equipping teams with a consistent set of tools for automation, deployment, and secret management ensures consistency and security. 

Identifying the Current State

Before building a platform, it’s crucial to understand the existing technology landscape used by product teams. This involves performing a thorough audit of the tools currently in use, analyzing how teams leverage them, and identifying gaps where new solutions are needed. This ensures the platform we build addresses real-world needs effectively.

Security

Platform engineering prioritizes security by implementing mechanisms for managing secrets such as encrypted storage solutions. The platform adheres to industry best practices, including regular security audits, continuous vulnerability monitoring, and enforcing strict access controls. This relentless vigilance ensures all tools and processes are secure and compliant.

The Platform Engineer’s Toolkit For Building Better Software Delivery Pipelines

Platform engineering is all about streamlining and automating critical processes to empower your development teams. But how exactly does it achieve this? Let’s explore the essential tools that platform engineers rely on:

Building Automation Powerhouses:

Infrastructure as Code (IaC):

CI/CD Pipelines:

Tools like Jenkins and GitLab CI/CD are essential for automating testing and deployment processes, ensuring applications are built, tested, and delivered with speed and reliability.

Maintaining Observability:

Monitoring and Alerting:

Prometheus and Grafana is a powerful duo that provides comprehensive monitoring capabilities. Prometheus scrapes applications for valuable metrics, while Grafana transforms this data into easy-to-understand visualizations for troubleshooting and performance analysis.

All-in-one Monitoring Solutions:

Tools like New Relic and Datadog offer a broader feature set, including application performance monitoring (APM), log management, and real-time analytics. These platforms help teams to identify and resolve issues before they impact users proactively.

Site Reliability Tools To Ensure High Availability and Scalability:

Container Orchestration:

Kubernetes orchestrates and manages container deployments, guaranteeing high availability and seamless scaling for your applications.

Log Management and Analysis:

The ELK Stack (Elasticsearch, Logstash, Kibana) is the go-to tool for log aggregation and analysis. It provides valuable insights into system behavior and performance, allowing teams to maintain consistent and reliable operations.

Managing Infrastructure

Secret Management:

HashiCorp Vault protects secretes, centralizes, and manages sensitive data like passwords and API keys, ensuring security and compliance within your infrastructure.

Cloud Resource Management:

Tools like AWS CloudFormation and Azure Resource Manager streamline cloud deployments. They automate the creation and management of cloud resources, keeping your infrastructure scalable, secure, and easy to manage. These tools collectively ensure that platform engineering can handle automation scripts, monitor applications, maintain site reliability, and manage infrastructure smoothly.

The Future is AI-Powered:

The platform engineering landscape is constantly evolving, and AI is rapidly transforming how we build and manage software delivery pipelines. The tools like Terraform, Kubecost, Jenkins X, and New Relic AI facilitate AI capabilities like:

  • Enhance security
  • Predict infrastructure requirements
  • Optimize resource security 
  • Predictive maintenance
  • Optimize monitoring process and cost

Conclusion

Platform engineering is becoming the cornerstone of modern software development. Gartner estimates that by 2026, 80% of development companies will have internal platform services and teams to improve development efficiency. This surge underscores the critical role platform engineering plays in accelerating software delivery and gaining a competitive edge.

With a strong foundation in platform engineering, organizations can achieve greater agility, scalability, and efficiency in the ever-changing software landscape. Are you ready to embark on your platform engineering journey?

Building a robust platform requires careful planning, collaboration, and a deep understanding of your team’s needs. At Mantra Labs, we can help you accelerate your software delivery. Connect with us to know more. 

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot