Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(8)

Customer Journey(17)

Design(43)

Solar Industry(8)

User Experience(66)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(10)

Enterprise Solution(28)

Technology Modernization(7)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(57)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(143)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(19)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

Implementing a Clean Architecture with Nest.JS

4 minutes read

This article is for enthusiasts who strive to write clean, scalable, and more importantly refactorable code. It will give an idea about how Nest.JS can help us write clean code and what underlying architecture it uses.

Implementing a clean architecture with Nest.JS will require us to first comprehend what this framework is and how it works.

What is Nest.JS?

Nest or Nest.JS is a framework for building efficient, scalable Node.js applications (server-side) built with TypeScript. It uses Express or Fastify and allows a level of abstraction to enable developers to use an ample amount of modules (third-party) within their code.

Let’s dig deeper into what is this clean architecture all about. 

Well, you all might have used or at least heard of MVC architecture. MVC stands for Model, View, Controller. The idea behind this is to separate our project structure into 3 different sections.

1. Model: It will contain the Object file which maps with Relation/Documents in the DB.

2. Controller: It is the request handler and is responsible for the business logic implementation and all the data manipulation.

3. View: This part will contain files that are concerned with the displaying of the data, either HTML files or some templating engine files.

To create a model, we need some kind of ORM/ODM tool/module/library to build it with. For instance, if you directly use the module, let’s say ‘sequelize’, and then use the same to implement login in your controller and make your core business logic dependent upon the ‘sequelize’. Now, down the line, let’s say after 10 years, there is a better tool in the market that you want to use, but as soon as you replace sequelize with it, you will have to change lots of lines of code to prevent it from breaking. Also, you’ll have to test all the features once again to check if it’s deployed successfully or not which may waste valuable time and resource as well. To overcome this challenge, we can use the last principle of SOLID which is the Dependency Inversion Principle, and a technique called dependency injection to avoid such a mess.

Still confused? Let me explain in detail.

So, what Dependency Inversion Principle says in simple words is, you create your core business logic and then build dependency around it. In other words, free your core logic and business rules from any kind of dependency and modify the outer layers in such a way that they are dependent on your core logic instead of your logic dependent on this. That’s what clean architecture is. It takes out the dependency from your core business logic and builds the system around it in such a way that they seem to be dependent on it rather than it being dependent on them.

Let’s try to understand this with the below diagram.

Source: Clean Architecture Cone 

You can see that we have divided our architecture into 4 layers:

1. Entities: At its core, entities are the models(Enterprise rules) that define your enterprise rules and tell what the application is about. This layer will hardly change over time and is usually abstract and not accessible directly. For eg., every application has a ‘user’. What all fields the user should store, their types, and relations with other entities will comprise an Entity.

2. Use cases: It tells us how can we implement the enterprise rules. Let’s take the example of the user again. Now we know what data to be operated upon, the use case tells us how to operate upon this data, like the user will have a password that needs to be encrypted, the user needs to be created, and the password can be changed at any given point of time, etc.

3. Controllers/Gateways: These are channels that help us to implement the use cases using external tools and libraries using dependency injection.

4. External Tools: All the tools and libraries we use to build our logic will come under this layer eg. ORM, Emailer, Encryption, etc.

The tools we use will be depending upon how we channel them to use cases and in turn, use cases will depend upon the entities which is the core of our business. This way we have inverted the dependency from outwards to inwards. That’s what the Dependency Inversion Principal of SOLID implies.

Okay, by now, you got the gist of Nest.JS and understood how clean architecture works. Now the question arises, how these two are related?  

Let’s try to understand what are the 3 building blocks of Nest.JS and what each of them does.

  1. Modules: Nest.JS is structured in such a way that we can treat each feature as a module. For eg., anything which is linked with the User such as models, controllers, DTOs, interfaces, etc., can be separated as a module. A module has a controller and a bunch of providers which are injectible functionalities like services, orm, emailer, etc.
  1. Controllers: Controllers in Nest.JS are interfaces between the network and your logic. They are used to handle requests and return responses to the client side of the application (for example, call to the API).
  1. Providers (Services): Providers are injectable services/functionalities which we can inject into controllers and other providers to provide flexibility and extra functionality. They abstract any form of complexity and logic.

To summarize,

  • We have controllers that act as interfaces (3rd layer of clean architecture)
  • We have providers which can be injected to provide functionality (4th layer of clean architecture: DB, Devices, etc.)
  • We can also create services and repositories to define our use case (2nd Layer)
  • We can define our entities using DB providers (1st Layer)

Conclusion:

Nest.JS is a powerful Node.JS framework and the most well-known typescript available today. Now that you’ve got the lowdown on this framework, you must be wondering if we can use it to build a project structure with a clean architecture. Well, the answer is -Yes! Absolutely. How? I’ll explain in the next series of this article. 

Till then, Stay tuned!

About the Author:

Junaid Bhat is currently working as a Tech Lead in Mantra Labs. He is a tech enthusiast striving to become a better engineer every day by following industry standards and aligned towards a more structured approach to problem-solving. 


Read our latest blog: Golang-Beego Framework and its Applications

Cancel

Knowledge thats worth delivered in your inbox

What If the Sun Took a Day Off?

By :

Ever wondered what life would be like if the Sun took a day off? Picture waking up to an Earth shrouded in darkness, where temperatures drop dramatically within hours, plunging the planet into an icy chill. Plants, deprived of sunlight, would halt photosynthesis, leading to a food production crisis. Our reliance on renewable energy would face a sudden halt, causing widespread blackouts and chaos in cities across the globe.

A day without the Sun would throw our world into chaos! Luckily, that’s never going to happen (at least in our lifetime!). But this thought experiment underscores the Sun’s critical role in our lives and highlights why harnessing solar energy is so vital. While we’re increasingly turning to solar power, we are still missing out on capturing a massive amount of solar energy that falls on Earth every single day.

How Much Solar Energy Are We Missing Out On?

Every day, the Earth receives about 173,000 terawatts of solar energy from the Sun—more than 10,000 times the world’s total daily energy consumption. Despite this abundance, we only capture a tiny fraction of this energy. In 2023, solar energy accounted for just 4.5% of global electricity generation—a huge opportunity waiting to be tapped.

If we could capture just a small percentage of the Sun’s energy, we could power the entire world many times over. The total solar energy that hits the Earth in just one hour could meet the world’s energy needs for a full year. Yet, due to limitations in solar panel deployment, technology efficiency, and energy storage, the vast majority of solar energy goes unused each day.

As we improve solar technology and infrastructure, capturing more of this energy becomes not just a possibility but a necessity for a sustainable future. Let’s dive into how cutting-edge technology is making solar energy more accessible and efficient, helping to turn this untapped potential into real, usable power.

How Tech Makes Solar Adoption Easier

Customer-centric technology is revolutionizing the way we adopt solar energy. Imagine an app that allows you to simply point your smartphone at your house to estimate how many solar panels you need, their ideal placement, and the energy they can generate.

Here are the key benefits of this innovative approach:

  • Precision: By capturing images of your property through satellite, the app calculates the optimal placement of solar panels for maximum energy production. Studies have shown that precise placement can increase efficiency by up to 20%.
  • Customer Engagement: Users receive real-time insights into their energy production, helping them understand their solar power system better, whether they’re using Tesla solar panels, solar power generators, or even solar attic fans to optimize home energy usage
  • Seamless Experience: With user-friendly interfaces, consumers can easily monitor their solar systems remotely and receive updates on their energy output. This accessibility is crucial for encouraging the wider adoption of solar technologies.

The Tech-Driven Shift Toward Sustainability

As solar technology evolves, so do the solar panels themselves. Innovations like Tesla solar roof systems, flexible solar plates, and bifacial panels are redefining what’s possible in renewable energy. Even smaller systems—such as portable solar generators and solar air conditioners—empower homeowners to harness solar power efficiently.

Photovoltaic (PV)  panels, the cornerstone of solar energy, have seen incredible advancements, now boasting efficiencies of up to 22%. This means fewer panels are needed to produce more energy, making solar energy more effective for a wide range of applications, from solar shingles to off-grid systems.

Moreover, the push towards cradle-to-cradle sustainability is reshaping the industry. New solar panels are being designed with recyclability in mind, reducing their environmental footprint. Innovations in recycling technology now recover up to 95% of materials from end-of-life panels, ensuring that even the oldest solar systems contribute to a greener future.

While solar technology continues to advance, solar panels themselves are becoming more efficient and environmentally sustainable. Innovations such as systems, flexible solar plates, and bifacial solar panels are pushing the boundaries of what’s possible in renewable energy. Even smaller systems like portable solar generators and solar air conditioners are empowering homeowners to tap into the power of the Sun efficiently and sustainably.  Photovoltaic (PV) panels, the cornerstone of solar energy – now boast efficiencies of up to 22%​. This means a smaller array of solar panels for home or commercial use can generate more electricity. This makes solar energy systems more appealing and effective for various applications, from solar roof shingles to off-grid solar systems.

Moreover, the move toward cradle-to-cradle sustainability—where solar panels are built from materials that can be easily recycled—has gained traction. This reduces the environmental footprint even further. Innovations in recycling can recover up to 95% of materials from end-of-life panels, According to PV Cycle​, with room for improvement in recycling.

Making Solar Affordable and Accessible

Historically, one of the biggest barriers to solar adoption has been the cost. But things are changing fast. Innovations in financing models, such as Power Purchase Agreements (PPAs) and solar loans, have significantly reduced the financial burden of installing solar systems. According to the Solar Energy Industries Association (SEIA), the average cost of solar installation has dropped by over 70% in the last decade.

Couple that with federal and state incentives like the Investment Tax Credit (ITC), which provides a 30% tax credit on solar installations, and solar energy is more affordable than ever. Net metering programs, which allow homeowners to sell excess energy back to the grid, further enhance savings, making solar not only accessible but also financially rewarding.

Conclusion

The future of solar energy goes far beyond rooftop panels—it’s about making the entire solar experience intuitive, accessible, and sustainable. With smart apps and tech-driven tools, consumers can now manage their solar energy systems with just a few taps on their phones, making the shift to green energy simpler and more engaging.

At Mantra Labs, we’re at the forefront of this solar revolution. We’ve helped some of the world’s largest solar providers develop cutting-edge, customer-friendly solutions. Our mobile apps allow users to estimate solar panel needs, monitor system performance, and even track their environmental impact—all from the convenience of their smartphone.

Together, with innovative tech and a commitment to sustainability, we’re building a future where solar energy isn’t just an option—it’s the smarter, more accessible, and greener solution for everyone.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot