Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(6)

Manufacturing(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(33)

Technology Modernization(9)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(41)

Insurtech(67)

Product Innovation(59)

Solutions(22)

E-health(12)

HealthTech(25)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(154)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(8)

Computer Vision(8)

Data Science(24)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

4 Key Takeaways from AI for Data-driven Insurers Webinar

5 minutes, 54 seconds read

The adoption of AI has increased exponentially across the business ecosystem in the past couple of years. Yet, Insurance still lags behind many industries due to the nature of its business. However, the ease of convenience that has come with AI implementations has made it indispensable to Insurers. So, where has the demand for the convenience come from? ‘Modern Insurance Customer’. The millennials today demand 24×7 service at their fingertips. They are keener towards information provided on digital channels and more likely to use social media and texting for Insurance interactions. To suffice the needs and demands of the modern insurance customer, AI integration is needed.

Role of AI in Insurance

Currently, AI is playing a pivotal role in transforming Insurance processes such as Claims, Underwriting, Customer Service, Marketing, fraud detection etc. For example, AI chatbots are being used to handle customer service which has led to a significant reduction in cost and optimization of human resources. According to a report by Deloitte on Unraveling the Indian Consumer, India has the world’s largest millennial population of 440 million in the age group of 18-35 years. Internet users in the country are expected to increase from 432 million in 2016 to 647 million by 2021, taking internet penetration from 30 per cent in 2016 to 59 per cent in 2021.

AI-based technologies will be needed to meet the evolving demands of modern insurance customers. 

According to the State of AI in Insurance 2020 report, nearly half of all Insurance executives surveyed believe that Automated processing can add value to their customer experience journeys. Nationwide is using artificial intelligence to help analyse customer interactions so it can solve customers’ problems earlier. Using AI and NLP, the insurer identified opportunities for reducing inefficiencies. And the result was more than half of all email enquiries could be resolved by guiding users towards digital channels instead. 

During the webinar, we polled the audience to gauge their motivation for implementing AI in their business processes. 44% felt that Claims Processing was the main reason to adopt AI into their business Insurance processes. 

The quick poll was in line with Mantra Labs’  State of AI in Insurance report 2020 which found that 74% of the respondents leaning towards the adoption of AI in Claims Processing. 

The webinar addressed some of the key challenges faced by Insurers, reasons behind these challenges and how we can approach these challenges to bridge the disconnect. 

Data in Silos

Most businesses that have data kept in silos face challenges in collaboration, execution and measurement of their bigger picture goals. Accumulating information in silos may not give accurate insights into improving engagement, which leads to impersonalized content that doesn’t speak to the customer. However, models well-trained on historic data, don’t necessarily perform better with live data. The challenge is that data is often needed before it is even possible to conduct a proof of concept — and sourcing the right data can be both time consuming and costly. The right approach to this issue would be to treat Data as the centrepiece for transformation. Insurers should engage with data scientists/consultants to review the quality of your data. Data exploration exercises need to be performed to challenge/validate the existing assumptions about data captured and stored within the org. 

[Related: 5 Proven Strategies to Break Through the Data Silos]

People, Expertise and Technical Competency

Many organizations face a challenge in finding the right ‘Skill and Talent’ for developing AI strategies and implementing them. Critical skill-sets like data scientists, cloud specialists, machine learning engineers, and AI engineers are essential to keep pace. Several Industry experts have also relayed that many AI-based projects and proof-of-concept work do not take off the ground due to lack of quality data at the disposal of such skilled professionals — derailing their availability/ usefulness for hiring purposes. Securing the right data science teams and training the right amount of data needed to support algorithm development can improve confidence levels for organizations.

Clear Vision, Process & Support from Executive Leadership

Often the reason for the failure of AI projects is due to lack of clear thought process from the top management. According to a recent BCG report, there is a big gap between expectations and planning. Most companies want to create a long-term competitive advantage with AI and expect to see a major impact from AI within 5 years. The big disconnect, however, is that only 39% of enterprises had an AI strategy to go with it. Insurers shouldn’t run headfirst into moonshot AI projects. Instead, they should take a more measured approach that identifies a simple problem or problems (use case) that AI can address. Insurers must ensure that the goals of AI projects must be in line with organization goals.

Technology and Vendor Selection

Many Insurers today fail to understand how AI can be leveraged for their business. There is a lot of unseen effort that goes behind any AI implementation project. They are not sure which AI-based technologies to be used for solving a particular problem. According to the State of AI in Insurance 2020 report, InsurTech funding in 2019 reached $6B revealing a stronger emphasis by insurance organizations to fast-track the progress and development made by startups in tackling age-old insurer ills with AI-fueled innovations. InsurTechs are seen as advantageous because they can add value by scaling their operating models at incredible speed owing to their nimble size.

There are tools, products developed harnessing AI-based technologies which have helped optimize several core insurance businesses. The Haven Life Risk Solutions team, in partnership with MassMutual, has developed a platform that uses both a rule engine and machine learning models to analyze the application and third party data in real-time. It can now help MassMutual make many underwriting decisions without human underwriter intervention, and in some cases also without a medical exam. Motor Insurance Claims is where AI is currently driving maximum efficiency. There are certain gaps that are being faced by insurers which can be resolved with AI platforms specific towards claims processing. FlowMagic, a visual AI platform developed by Mantra Labs focuses on streamlining Insurer workflows. 

[Related: FlowMagic — The Visual AI Platform for Insurer Workflows]

Concluding Remarks

In these challenging times, AI is already helping Insurance companies find their competitive edge, and stay operationally agile even during pandemics. Queries which are being addressed by chatbots help humans to handle more complex issues. It cannot be stressed enough that the next couple of months would be difficult for several businesses including Insurance. 

Companies across the world have already started making plans to ensure business continuity in this pandemic. AI or automation will play a crucial role in streamlining various processes and accelerate innovation to adapt to the dynamic environment and ensure long term stability.

Our host Parag Sharma interacted one on one with participants, during an interactive Q&A session where insights were shared with the audience. The discussions centred around some thought-provoking questions such as tracking AI performance once implemented, the role of AI in helping to reach Bharat, the potential for AI in telemedicine, etc. 

Articles from Parag:

Cancel

Knowledge thats worth delivered in your inbox

Smart Manufacturing Dashboards: A Real-Time Guide for Data-Driven Ops

Smart Manufacturing starts with real-time visibility.

Manufacturing companies today generate data by the second through sensors, machines, ERP systems, and MES platforms. But without real-time insights, even the most advanced production lines are essentially flying blind.

Manufacturers are implementing real-time dashboards that serve as control towers for their daily operations, enabling them to shift from reactive to proactive decision-making. These tools are essential to the evolution of Smart Manufacturing, where connected systems, automation, and intelligent analytics come together to drive measurable impact.

Data is available, but what’s missing is timely action.

For many plant leaders and COOs, one challenge persists: operational data is dispersed throughout systems, delayed, or hidden in spreadsheets. And this delay turns into a liability.

Real-time dashboards help uncover critical answers:

  • What caused downtime during last night’s shift?
  • Was there a delay in maintenance response?
  • Did a specific inventory threshold trigger a quality issue?

By converting raw inputs into real-time manufacturing analytics, dashboards make operational intelligence accessible to operators, supervisors, and leadership alike, enabling teams to anticipate problems rather than react to them.

1. Why Static Reports Fall Short

  • Reports often arrive late—after downtime, delays, or defects have occurred.
  • Disconnected data across ERP, MES, and sensors limits cross-functional insights.
  • Static formats lack embedded logic for proactive decision support.

2. What Real-Time Dashboards Enable

Line performance and downtime trends
Track OEE in real time and identify underperforming lines.

Predictive maintenance alerts
Utilize historical and sensor data to identify potential part failures in advance.

Inventory heat maps & reorder thresholds
Anticipate stockouts or overstocks based on dynamic reorder points.

Quality metrics linked to operator actions
Isolate shifts or procedures correlated with spikes in defects or rework.

These insights allow production teams to drive day-to-day operations in line with Smart Manufacturing principles.

3. Dashboards That Drive Action

Role-based dashboards
Dashboards can be configured for machine operators, shift supervisors, and plant managers, each with a tailored view of KPIs.

Embedded alerts and nudges
Real-time prompts, like “Line 4 below efficiency threshold for 15+ minutes,” reduce response times and minimize disruptions.

Cross-functional drill-downs
Teams can identify root causes more quickly because users can move from plant-wide overviews to detailed machine-level data in seconds.

4. What Powers These Dashboards

Data lakehouse integration
Unified access to ERP, MES, IoT sensor, and QA systems—ensuring reliable and timely manufacturing analytics.

ETL pipelines
Real-time data ingestion from high-frequency sources with minimal latency.

Visualization tools
Custom builds using Power BI, or customized solutions designed for frontline usability and operational impact.

Smart Manufacturing in Action: Reducing Market Response Time from 48 Hours to 30 Minutes

Mantra Labs partnered with a North American die-casting manufacturer to unify its operational data into a real-time dashboard. Fragmented data, manual reporting, delayed pricing decisions, and inconsistent data quality hindered operational efficiency and strategic decision-making.

Tech Enablement:

  • Centralized Data Hub with real-time access to critical business insights.
  • Automated report generation with data ingestion and processing.
  • Accurate price modeling with real-time visibility into metal price trends, cost impacts, and customer-specific pricing scenarios. 
  • Proactive market analysis with intuitive Power BI dashboards and reports.

Business Outcomes:

  • Faster response to machine alerts
  • Quality incidents traced to specific operator workflows
  • 4X faster access to insights led to improved inventory optimization.

As this case shows, real-time dashboards are not just operational tools—they’re strategic enablers. 

(Learn More: Powering the Future of Metal Manufacturing with Data Engineering)

Key Takeaways: Smart Manufacturing Dashboards at a Glance

AspectWhat You Should Know
1. Why Static Reports Fall ShortDelayed insights after issues occur
Disconnected systems (ERP, MES, sensors)
No real-time alerts or embedded decision logic
2. What Real-Time Dashboards EnableTrack OEE and downtime in real-time
Predictive maintenance using sensor data
Dynamic inventory heat maps
Quality linked to operators
3. Dashboards That Drive ActionRole-based views (operator to CEO)
Embedded alerts like “Line 4 down for 15+ mins”
Drilldowns from plant-level to machine-level
4. What Powers These DashboardsUnified Data Lakehouse (ERP + IoT + MES)
Real-time ETL pipelines
Power BI or custom dashboards built for frontline usability

Conclusion

Smart Manufacturing dashboards aren’t just analytics tools—they’re productivity engines. Dashboards that deliver real-time insight empower frontline teams to make faster, better decisions—whether it’s adjusting production schedules, triggering preventive maintenance, or responding to inventory fluctuations.

Explore how Mantra Labs can help you unlock operations intelligence that’s actually usable.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot