Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(6)

Manufacturing(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(33)

Technology Modernization(9)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(41)

Insurtech(67)

Product Innovation(59)

Solutions(22)

E-health(12)

HealthTech(25)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(154)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(8)

Computer Vision(8)

Data Science(24)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

AI’s Insatiable Appetite: Powering Innovation Sustainably

AI dazzles us with its feats, from chatbots understanding our queries to language models spinning creative tales. But have you pondered the colossal energy needed to fuel these technological marvels?

Research from the University of Massachusetts Amherst reveals that training a single behemoth like GPT-3, a titan among language models, emits carbon equivalent to 300,000 cars’ lifetime emissions. That’s akin to a medium-sized European town’s carbon output! And brace yourself: emissions from natural language processing doubled yearly till 2020, now rivaling the aviation industry’s impact. It’s as if countless planes continuously encircle the globe.

AI: Here to Stay, but at What Expense?

Yet, pulling the plug on AI isn’t an option. It’s entrenched in our lives, propelling innovation across sectors from healthcare to finance. The challenge? Balancing its ubiquity with sustainability.

The scale of energy consumption in the AI sector is staggering. According to a recent report by the International Energy Agency (IEA), global electricity consumption by AI data centers alone is projected to surpass 1,000 terawatt-hours annually by 2025, equivalent to the current electricity consumption of Japan and Germany combined. Such figures underscore the urgent need to address the environmental implications of AI’s rapid expansion.

AI: Here to Stay, but at What Expense? Indeed, the environmental cost is profound, necessitating concerted efforts from all stakeholders to reconcile AI’s benefits with its energy footprint.

Solutions for a Greener AI

Efforts span both hardware and software realms. Firms invest in energy-efficient hardware, like specialized chips and accelerators, and refine algorithms through compression and pruning, yielding environmental gains and cost savings.

Then there are the colossal data centers housing AI infrastructure. Leading cloud providers are pivoting to renewable energy sources and pioneering cooling systems, even exploring underwater data centers for natural cooling.

The Energy Consequences of AI:

  • AI’s adoption demands extensive energy, notably during training.
  • Balancing AI’s reach with energy efficiency is critical.
  • AI’s energy consumption contributes to environmental harm.
  • Urgent measures are needed to curb AI’s energy footprint.
  • Collaborative efforts are vital to mitigate AI’s energy-related impacts.
Technology

Policy and Partnerships: Leading the Charge

Governments worldwide are stepping into the fray, recognizing the urgent need for sustainable AI practices. Through a combination of regulations, incentives, and collaborative initiatives, policymakers are shaping a landscape where environmental consciousness is ingrained in technological innovation.

From establishing carbon emission targets specific to the AI sector to offering tax credits for companies adopting renewable energy solutions, governmental interventions are driving significant shifts towards sustainability. Additionally, partnerships between the public and private sectors are fostering innovative approaches to address the energy consumption dilemma without stifling technological advancement.

Urging Responsibility in AI Development: Setting the Standard

The responsibility falls not just on policymakers but also on AI developers and researchers to embed energy efficiency into the very fabric of AI design and implementation. By prioritizing sustainability metrics alongside performance benchmarks, the industry can pave the way for a greener future.

This involves not only optimizing algorithms and hardware but also cultivating a culture of environmental consciousness within AI development communities. Through knowledge-sharing, best practices, and collaborative research efforts, developers can collectively contribute to mitigating the environmental impact of AI technologies while maximizing their benefits.

Global Cloud Computing Emissions
(Source: Climatiq)

A Tale of Sustainable Success

Mantra Labs, in partnership with Viteos, developed advanced machine learning algorithms to optimize brokerage selection for specific trades and expedite insights from historical profit and loss (P&L) data. Our AI-enabled solution utilizes regression, outlier detection, and feature selection models to analyze historical transactions, trades, and financial data. It empowers Viteos’ users to efficiently identify the lowest-commission broker for their trades while ensuring rapid and accurate data insights. Our approach offers flexibility across diverse datasets and optimizes memory utilization, enhancing scalability and efficiency. To read the case study, click here.

Shaping an Energy-Efficient AI Future

AI’s future is luminous, but it must be energy-efficient. With collaborative efforts spanning tech firms, developers, policymakers, and users, we can safeguard the planet while advancing technological frontiers.

By embracing energy-smart practices and renewable energy, we can unlock AI’s potential while minimizing ecological fallout. The moment for action is now, and each stakeholder plays a pivotal role in crafting a sustainable AI tomorrow.

Cancel

Knowledge thats worth delivered in your inbox

Smart Manufacturing Dashboards: A Real-Time Guide for Data-Driven Ops

Smart Manufacturing starts with real-time visibility.

Manufacturing companies today generate data by the second through sensors, machines, ERP systems, and MES platforms. But without real-time insights, even the most advanced production lines are essentially flying blind.

Manufacturers are implementing real-time dashboards that serve as control towers for their daily operations, enabling them to shift from reactive to proactive decision-making. These tools are essential to the evolution of Smart Manufacturing, where connected systems, automation, and intelligent analytics come together to drive measurable impact.

Data is available, but what’s missing is timely action.

For many plant leaders and COOs, one challenge persists: operational data is dispersed throughout systems, delayed, or hidden in spreadsheets. And this delay turns into a liability.

Real-time dashboards help uncover critical answers:

  • What caused downtime during last night’s shift?
  • Was there a delay in maintenance response?
  • Did a specific inventory threshold trigger a quality issue?

By converting raw inputs into real-time manufacturing analytics, dashboards make operational intelligence accessible to operators, supervisors, and leadership alike, enabling teams to anticipate problems rather than react to them.

1. Why Static Reports Fall Short

  • Reports often arrive late—after downtime, delays, or defects have occurred.
  • Disconnected data across ERP, MES, and sensors limits cross-functional insights.
  • Static formats lack embedded logic for proactive decision support.

2. What Real-Time Dashboards Enable

Line performance and downtime trends
Track OEE in real time and identify underperforming lines.

Predictive maintenance alerts
Utilize historical and sensor data to identify potential part failures in advance.

Inventory heat maps & reorder thresholds
Anticipate stockouts or overstocks based on dynamic reorder points.

Quality metrics linked to operator actions
Isolate shifts or procedures correlated with spikes in defects or rework.

These insights allow production teams to drive day-to-day operations in line with Smart Manufacturing principles.

3. Dashboards That Drive Action

Role-based dashboards
Dashboards can be configured for machine operators, shift supervisors, and plant managers, each with a tailored view of KPIs.

Embedded alerts and nudges
Real-time prompts, like “Line 4 below efficiency threshold for 15+ minutes,” reduce response times and minimize disruptions.

Cross-functional drill-downs
Teams can identify root causes more quickly because users can move from plant-wide overviews to detailed machine-level data in seconds.

4. What Powers These Dashboards

Data lakehouse integration
Unified access to ERP, MES, IoT sensor, and QA systems—ensuring reliable and timely manufacturing analytics.

ETL pipelines
Real-time data ingestion from high-frequency sources with minimal latency.

Visualization tools
Custom builds using Power BI, or customized solutions designed for frontline usability and operational impact.

Smart Manufacturing in Action: Reducing Market Response Time from 48 Hours to 30 Minutes

Mantra Labs partnered with a North American die-casting manufacturer to unify its operational data into a real-time dashboard. Fragmented data, manual reporting, delayed pricing decisions, and inconsistent data quality hindered operational efficiency and strategic decision-making.

Tech Enablement:

  • Centralized Data Hub with real-time access to critical business insights.
  • Automated report generation with data ingestion and processing.
  • Accurate price modeling with real-time visibility into metal price trends, cost impacts, and customer-specific pricing scenarios. 
  • Proactive market analysis with intuitive Power BI dashboards and reports.

Business Outcomes:

  • Faster response to machine alerts
  • Quality incidents traced to specific operator workflows
  • 4X faster access to insights led to improved inventory optimization.

As this case shows, real-time dashboards are not just operational tools—they’re strategic enablers. 

(Learn More: Powering the Future of Metal Manufacturing with Data Engineering)

Key Takeaways: Smart Manufacturing Dashboards at a Glance

AspectWhat You Should Know
1. Why Static Reports Fall ShortDelayed insights after issues occur
Disconnected systems (ERP, MES, sensors)
No real-time alerts or embedded decision logic
2. What Real-Time Dashboards EnableTrack OEE and downtime in real-time
Predictive maintenance using sensor data
Dynamic inventory heat maps
Quality linked to operators
3. Dashboards That Drive ActionRole-based views (operator to CEO)
Embedded alerts like “Line 4 down for 15+ mins”
Drilldowns from plant-level to machine-level
4. What Powers These DashboardsUnified Data Lakehouse (ERP + IoT + MES)
Real-time ETL pipelines
Power BI or custom dashboards built for frontline usability

Conclusion

Smart Manufacturing dashboards aren’t just analytics tools—they’re productivity engines. Dashboards that deliver real-time insight empower frontline teams to make faster, better decisions—whether it’s adjusting production schedules, triggering preventive maintenance, or responding to inventory fluctuations.

Explore how Mantra Labs can help you unlock operations intelligence that’s actually usable.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot