Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(6)

Manufacturing(4)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(33)

Technology Modernization(9)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(41)

Insurtech(67)

Product Innovation(59)

Solutions(22)

E-health(12)

HealthTech(25)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(154)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(8)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

Amazon EC2 instances and comparison

Amazon is the market leader in cloud solution and it offers customers a wide range of EC2 instances.
Amazon Elastic Compute Cloud (Amazon EC2) is one of the most widely used services of AWS. This service is used to create and use virtual machines as service.

Most of the time when we require a virtual machine we just for T2 instance type which is meant for the general purpose. But AWS also provides a wide range of EC2 instance types which are meant for specific reasons.

General Purpose instances T2 M5 M4
Compute Optimized C5 C4
Memory Optimized X1e X1 R4
Accelerated Computing P3 P2 G3 F1
Storage Optimized H1 I3 D2

T2

Use Case: Websites and web applications, development environments, build servers, code repositories, microservices, test and staging environments, and line of business applications.

M5

Use Case: Small and mid-size databases, data processing tasks that require additional memory, caching fleets, and for running backend servers for SAP, Microsoft SharePoint, cluster computing, and other enterprise applications.

M4

Use Case: Small and mid-size databases, data processing tasks that require additional memory, caching fleets, and for running backend servers for SAP, Microsoft SharePoint, cluster computing, and other enterprise applications.

C5

Use Case: High-Performance web servers, scientific modeling, batch processing, distributed analytics, high-performance computing (HPC), machine/deep learning inference, ad serving, highly scalable multiplayer gaming, and video encoding.

C4

Use Case: High performance front-end fleets, web-servers, batch processing, distributed analytics, high performance science and engineering applications, ad serving, MMO gaming, and video-encoding.

X1e

Use Case: High-Performance databases, in-memory databases (e.g. SAP HANA) and memory intensive applications. x1e.32xlarge instance certified by SAP to run next-generation Business Suite S/4HANA, Business Suite on HANA (SoH), Business Warehouse on HANA (BW), and Data Mart Solutions on HANA on the AWS cloud.

X1

Use Case: In-memory databases (e.g. SAP HANA), big data processing engines (e.g. Apache Spark or Presto), high performance computing (HPC). Certified by SAP to run Business Warehouse on HANA (BW), Data Mart Solutions on HANA, Business Suite on HANA (SoH), Business Suite S/4HANA.

R4

Use Case: High-Performance databases, data mining & analysis, in-memory databases, distributed web scale in-memory caches, applications performing real-time processing of unstructured big data, Hadoop/Spark clusters, and other enterprise applications.

P3

Use Case: Machine/Deep learning, high performance computing, computational fluid dynamics, computational finance, seismic analysis, speech recognition, autonomous vehicles, drug discovery.

P2

Use Case: Machine learning, high performance databases, computational fluid dynamics, computational finance, seismic analysis, molecular modeling, genomics, rendering, and other server-side GPU compute workloads.

G3

Use Case: 3D visualizations, graphics-intensive remote workstation, 3D rendering, application streaming, video encoding, and other server-side graphics workloads.

F1

Use Case: Genomics research, financial analytics, real-time video processing, big data search and analysis, and security.

H1

Use Case: MapReduce-based workloads, distributed file systems such as HDFS and MapR-FS, network file systems, log or data processing applications such as Apache Kafka, and big data workload clusters.

I3

Use Case: NoSQL databases (e.g. Cassandra, MongoDB, Redis), in-memory databases (e.g. Aerospike), scale-out transactional databases, data warehousing, Elasticsearch, analytics workloads.

D3

Use Case: Massively Parallel Processing (MPP) data warehousing, MapReduce and Hadoop distributed computing, distributed file systems, network file systems, log or data-processing applications

Mantra Labs is the technical partner with AWS to help our customers of all sizes design, architect, build, migrate, and manage their workloads and applications on AWS.

For more information, please write us at hello@mantralabsglobal.com

Cancel

Knowledge thats worth delivered in your inbox

NPS in Insurance Claims: What Insurance Leaders Are Doing Differently

Claims are the moment of truth. Are you turning them into moments of loyalty?

In insurance, your app interface might win you downloads. Your pricing might drive conversions.
But it’s the claims experience that decides whether a customer stays—or leaves for good.

According to a survey by NPS Prism, promoters are 2.3 times more likely to renew their insurance policies than passives or detractors—highlighting the strong link between customer advocacy and retention.

NPS in insurance industry is a strong predictor of customer retention. Many insurers are now prioritizing NPS to improve their claims experience.

So, what are today’s high-NPS insurers doing differently? Spoiler: it’s not just about faster payouts.

We’ve worked with claims teams that had best-in-class automation—but still had low NPS. Why? Because the process felt like a black box.
Customers didn’t know where their claim stood. They weren’t sure what to do next. And when money was at stake, silence created anxiety and dissatisfaction.

Great customer experience (CX) in claims isn’t just about speed—it’s about giving customers a sense of control through clear communication and clarity.

The Traditional Claims Journey

  • Forms → Uploads → Phone calls → Waiting
  • No real-time updates
  • No guidance after claim initiation
  • Paper documents and email ping-pong

The result? Frustrated customers and overwhelmed call centers.

The CX Gap: It’s Not Just Speed—It’s Transparency

Customers don’t always expect instant decisions. What they want:

  • To know what’s happening with their claim
  • To understand what’s expected of them
  • To feel heard and supported during the process

How NPS Leaders Are Winning Loyalty with CX-Driven Claims and High NPS

Image Source: NPS Prism

1. Real-Time Status Updates

Transparency to the customer via mobile app, email, or WhatsApp—keeping them in the loop with clear milestones. 

2. Proactive Nudges

Auto-reminders, such as “upload your medical bill” or “submit police report,” help close matters much faster and avoid back-and-forth.

3. AI-Powered Document Uploads

Single-click scans with OCR + AI pull data instantly—no typing, no errors.

4. In-the-Moment Feedback Loops

Simple post-resolution surveys collect sentiment and alert on issues in real time.

For e.g., Lemonade uses emotional AI to detect customer sentiment during the claims process, enabling empathetic responses that boost satisfaction and trust.

Smart Nudges from Real-Time Journey Tracking

For a leading insurance firm, we mapped the entire in-app user journey—from buying or renewing a policy to initiating a claim or checking discounts. This helped identify exactly where users dropped off. Based on real-time activity, we triggered personalized notifications and offers—driving better engagement and claim completion rates.

Tech Enablement

  • Claims Orchestration Layer: Incorporates legacy systems, third-party tools, and front-end apps for a unified experience.
  • AI & ML Models: For document validation, fraud detection, and claim routing, sentiment analysis is used. Businesses utilizing emotional AI report a 25% increase in customer satisfaction and a 30% decrease in complaints, resulting in more personalized and empathetic interactions.
  • Self-Service Portals: Customers can check their status, update documents, and track payouts—all without making a phone call.

Business Impact

What do insurers gain from investing in CX?

A faster claim is good. But a fair, clear, and human one wins loyalty.

And companies that consistently track and act on CX metrics are better positioned to retain customers and build long-term loyalty.

At Mantra Labs, we help insurers build end-to-end, tech-enabled claims journeys that delight customers and drive operational efficiency.
From intelligent document processing to AI-led nudges, we design for empathy at scale.

Want a faster and more transparent claims experience?

Let’s design it together.
Talk to our insurance transformation team today.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot