Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(6)

Manufacturing(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(33)

Technology Modernization(9)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(41)

Insurtech(67)

Product Innovation(59)

Solutions(22)

E-health(12)

HealthTech(25)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(154)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(8)

Computer Vision(8)

Data Science(24)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

The Importance of Data Ethics in Insurance

4 minutes, 38 seconds read

In a world where digitization is rapidly making its way into our everyday life, challenges come as an add on package. Amongst many others, Data and Privacy are the most raised concerns. Be it any sector, consumers need assurance that their data is safe with the company. Insurance is one of the sectors that banks highly sensitive data of its customers. Data breaches, wrongful processing of customer data, using the personal information of customers without consent, etc. puts a dent in the company’s image. We have seen the scandal caused by the data breach at Facebook. 

In September 2018, Facebook announced that an attack on its computer network exposed the personal data of over 50 million users. According to Facebook, hackers were able to gain access to the system by exploiting a vulnerability in the code used for the ‘View as’ feature. The attackers stole the ‘access tokens’, which took over the user’s accounts and got access to other services. 

The need for data protection in Insurance

‘Trust’ is an essential part of the Insurance industry, failure of which can lead to loss of customer loyalty and subsequently loss of business. Insurance companies need to process customer data for calculating premiums, customized policies, claims, etc. 

In India, The Information Technology Act, 2000 (IT Act) and the Information Technology (Reasonable Security Practices and Procedures and Sensitive Personal Data or Information) Rules, 2011 (SPDI Rules) set out the general framework for data protection. However, given the nature of the Insurance business and intermediaries, the Insurance Regulatory and Development Authority of India (IRDAI) has prescribed an additional framework for the protection of policyholder information and data, which Insurers need to follow in addition to the general framework under the IT Act. 

As India moves towards digitization, the IRDAI and IT Act are not enough to ensure proper compliance of data. The nation needs a comprehensive Data Protection law along with a governing body to oversee the implementation of the law. A draft of the Data Protection Bill was introduced in July 2018 which later was tabled on 11th December 2019 by the Indian Parliament. However, the Bill is being analyzed by a Joint Parliamentary Committee (JPC) in consultation with various groups. Indeed a groundbreaking step for our country, but it might have dangerous implications. The bill gives power to the government to access customers’ private data or government agency data on grounds of sovereignty or public order. 

The question is that will the government adhere to data ethics while processing this private data? The answer is unknown, but this step puts Insurance companies and TPAs under pressure to take steps towards data protection.

How can Insurers ensure data ethics

To ensure the privacy of customers and use data effectively, Insurers and intermediaries can adhere to the following measures-

Implementing risk management and IT security policies

Insurance is the most targeted industry by hackers. Also, with a lot of mobile workforce handling portable devices, monitoring data can be challenging. Companies need to protect data on the endpoint. The software should be installed on the systems directly and encrypting the data on portable devices such as USBs and hard drives. Growing risks in cybersecurity increased demand for Cyber Insurance policies. Cyber Insurance products are another such medium which helps in mitigating risks in the event of a cyber attack or a breach. 

According to a report by Data Security Council of India on Cyber Insurance in India, the Cyber Global Insurance market is prone to grow from a CAGR of 27% from 4.2 Bn to 22.8 Bn from 2017 to 2024. Insurers can also take measures such as setting-up internal policies and regular audits to keep a check on the data compliance. 

Consent mechanism for using policy holder’s data

A company might need data for internal purposes such as upgrading services for its customers. In such cases, companies should mention the purpose and set-up a proper mechanism for taking consent. Insurers can also give a status update on the project for which they used the customer data to keep the trust factor intact.

Using data-centric technologies

Human errors are unavoidable. But a second step validation can be set-up using disruptive technologies such as quantum computing, blockchain, Artificial Intelligence. These technologies not only ensure data security but also help in utilizing the customer data most efficiently.

[Related: 5 Proven Strategies to Break Through the Data Silos]

Ensuring transparency with customers.

In the event of a data breach, the company must inform the customers and take steps to contain the damage. In 2014, Anthem Healthcare was attacked which led to a data breach. They immediately sent out alerts to their customers informing of the possibility of their data leak. Subsequently, they also informed the media after 8 days. Furthermore, they contacted the FBI regarding the attack and hired Mandiant, a cybersecurity firm to assess the level of damage. As an essential part of data ethics, it is equally important to own the mistake and take appropriate measures.

[Related: AI in Insurance: Takeaways from AI for Data-driven Insurers Webinar]

Merits of the case: data ethics in Insurance

Data breaches can occur due to superficial monitoring of data flow; lack of accurate privacy design; poor internal audits; failure in conducting resistance tests; use of outdated security systems. 

The present crisis of COVID-19 has made data all the more vulnerable. As many employees are working from home, data security compliance has been an issue. Data protection bills and authority can act as watchdogs in the Insurance sector to avoid breaches. The Insurance sector should not see the law as a burden for additional compliance but rather an opportunity for long term customer trust. 

If you want to know more about the importance of data, and how to prevent data loss in other organizations that provide financial services, do read Financial services businesses must protect PII. DLP can help.

Cancel

Knowledge thats worth delivered in your inbox

Smart Manufacturing Dashboards: A Real-Time Guide for Data-Driven Ops

Smart Manufacturing starts with real-time visibility.

Manufacturing companies today generate data by the second through sensors, machines, ERP systems, and MES platforms. But without real-time insights, even the most advanced production lines are essentially flying blind.

Manufacturers are implementing real-time dashboards that serve as control towers for their daily operations, enabling them to shift from reactive to proactive decision-making. These tools are essential to the evolution of Smart Manufacturing, where connected systems, automation, and intelligent analytics come together to drive measurable impact.

Data is available, but what’s missing is timely action.

For many plant leaders and COOs, one challenge persists: operational data is dispersed throughout systems, delayed, or hidden in spreadsheets. And this delay turns into a liability.

Real-time dashboards help uncover critical answers:

  • What caused downtime during last night’s shift?
  • Was there a delay in maintenance response?
  • Did a specific inventory threshold trigger a quality issue?

By converting raw inputs into real-time manufacturing analytics, dashboards make operational intelligence accessible to operators, supervisors, and leadership alike, enabling teams to anticipate problems rather than react to them.

1. Why Static Reports Fall Short

  • Reports often arrive late—after downtime, delays, or defects have occurred.
  • Disconnected data across ERP, MES, and sensors limits cross-functional insights.
  • Static formats lack embedded logic for proactive decision support.

2. What Real-Time Dashboards Enable

Line performance and downtime trends
Track OEE in real time and identify underperforming lines.

Predictive maintenance alerts
Utilize historical and sensor data to identify potential part failures in advance.

Inventory heat maps & reorder thresholds
Anticipate stockouts or overstocks based on dynamic reorder points.

Quality metrics linked to operator actions
Isolate shifts or procedures correlated with spikes in defects or rework.

These insights allow production teams to drive day-to-day operations in line with Smart Manufacturing principles.

3. Dashboards That Drive Action

Role-based dashboards
Dashboards can be configured for machine operators, shift supervisors, and plant managers, each with a tailored view of KPIs.

Embedded alerts and nudges
Real-time prompts, like “Line 4 below efficiency threshold for 15+ minutes,” reduce response times and minimize disruptions.

Cross-functional drill-downs
Teams can identify root causes more quickly because users can move from plant-wide overviews to detailed machine-level data in seconds.

4. What Powers These Dashboards

Data lakehouse integration
Unified access to ERP, MES, IoT sensor, and QA systems—ensuring reliable and timely manufacturing analytics.

ETL pipelines
Real-time data ingestion from high-frequency sources with minimal latency.

Visualization tools
Custom builds using Power BI, or customized solutions designed for frontline usability and operational impact.

Smart Manufacturing in Action: Reducing Market Response Time from 48 Hours to 30 Minutes

Mantra Labs partnered with a North American die-casting manufacturer to unify its operational data into a real-time dashboard. Fragmented data, manual reporting, delayed pricing decisions, and inconsistent data quality hindered operational efficiency and strategic decision-making.

Tech Enablement:

  • Centralized Data Hub with real-time access to critical business insights.
  • Automated report generation with data ingestion and processing.
  • Accurate price modeling with real-time visibility into metal price trends, cost impacts, and customer-specific pricing scenarios. 
  • Proactive market analysis with intuitive Power BI dashboards and reports.

Business Outcomes:

  • Faster response to machine alerts
  • Quality incidents traced to specific operator workflows
  • 4X faster access to insights led to improved inventory optimization.

As this case shows, real-time dashboards are not just operational tools—they’re strategic enablers. 

(Learn More: Powering the Future of Metal Manufacturing with Data Engineering)

Key Takeaways: Smart Manufacturing Dashboards at a Glance

AspectWhat You Should Know
1. Why Static Reports Fall ShortDelayed insights after issues occur
Disconnected systems (ERP, MES, sensors)
No real-time alerts or embedded decision logic
2. What Real-Time Dashboards EnableTrack OEE and downtime in real-time
Predictive maintenance using sensor data
Dynamic inventory heat maps
Quality linked to operators
3. Dashboards That Drive ActionRole-based views (operator to CEO)
Embedded alerts like “Line 4 down for 15+ mins”
Drilldowns from plant-level to machine-level
4. What Powers These DashboardsUnified Data Lakehouse (ERP + IoT + MES)
Real-time ETL pipelines
Power BI or custom dashboards built for frontline usability

Conclusion

Smart Manufacturing dashboards aren’t just analytics tools—they’re productivity engines. Dashboards that deliver real-time insight empower frontline teams to make faster, better decisions—whether it’s adjusting production schedules, triggering preventive maintenance, or responding to inventory fluctuations.

Explore how Mantra Labs can help you unlock operations intelligence that’s actually usable.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot