Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(6)

Manufacturing(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(33)

Technology Modernization(9)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(41)

Insurtech(67)

Product Innovation(59)

Solutions(22)

E-health(12)

HealthTech(25)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(154)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(8)

Computer Vision(8)

Data Science(24)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

Here’s How You Measure the ROI from Chatbots

5 minutes, 6 seconds read

IBM reports that globally businesses spend over $1.3 trillion/year to handle roughly 265 billion customer calls. Chatbots spring up to minimize the expenditure on handling customer queries, especially the most redundant ones.

It’s quite common for businesses to assess the return on investment before adopting new technology.

However, ROI from chatbots may vary according to the purpose it serves. For example, an insurance chatbot ROI differs from that of an HR chatbot. Here are certain parameters to consider for calculating the return on investment from chatbots.

#1 Average Human Live-chat Cost

The total number of tickets raised per month and the number of agents involved gives an idea of the average price per contact.

According to Help Desk Institute, the average cost/minute for a live chat is $1.05, while the average cost per chat session is $16.80. Assuming an organization handles 10,000 chats in a month, the cost incurred sums up to $168,000/month.

Depending on the number of people involved and their compensation, you can calculate the amount you’re spending on your organization’s customer support. Here’s a salary reference, which can be used in further calculations.

sample customer support operational cost

The salaries mentioned are referred from Job Futuromat 2019 wrt 12 months, 18 working days, 8 hours.

The actual operational cost also depends on material resources invested like office space, conveyance, communications, gadgets, etc. You can consider these aspects on your chatbot ROI calculator.

#2 Bot Installation Cost

The phases of bot installation cost involves brainstorming sessions, integration, and training both bots and agents.

During kick-off sessions, stakeholders discuss the scope of the bot, define goals and responsibilities, and make a project plan. After this, programmers and managers integrate the bot on the organization’s website and other platforms. Customizing the bot according to the client’s support cases covers the bot training phase. Testing the bot and training agents to use it are also factored into the ‘bot’ installation costs.

According to Ometrics, the average development charge for a chatbot may range from $1,000 to $5,000. But, this is a one-time charge, and after that the bot-developer may bill for maintenance charges.

chatbot roi calculator: installation cost

If the chatbot requires a higher level of customization, then the bot-developer may also claim additional charges. Also, the number of days spent for bot installation varies according to industries and organizations.

#3 Gains through Bots

Here we’re assuming all the customer queries are routed through the bot and it is accurate 50% of the time. Out of the 50% queries handled by a bot, if half of them are self-served and the remaining required human intervention, then monthly gains from the bot can be-

chatbot roi calculator: gains from chatbot

You can find the exact cases and accuracy from your bot’s analytics dashboard.

#4 Monthly Maintenance Cost

Like humans, bots also require human assistance for its successful operation. Its monthly maintenance cost is a summation of the organization’s human resources it needs and developer’s charges. Here, let’s assume a chatbot maintenance fee, which ranges from $100 to $1,000 a month. Similar to the bot development charges, maintenance fees vary according to bot capabilities.

chatbot roi calculator: montly maintenance cost

#5 Chatbots Return on Investment Calculation

The return on investment is a ratio of benefit from the investment to the cost of investment. It evaluates the efficiency of an investment. Mathematically, ROI = (Current Value of Investment – Cost of Investment) / Cost of Investment.

Since chatbots incur a one-time development cost and recurring monthly maintenance cost, here’s the chatbot ROI calculation from both perspectives.

Chatbot ROI during the first month: This includes the bot installation charges. 

For the above case,

ROI = (Gains through bot – Installation charge – maintenance charge)/(installation charge + maintenance charge)

ROI = ($63,000 – $9,292 – $3,647)/($9,292 – $3,647)

ROI = 3.9 or 390%

Chatbot ROI after the first month: This excludes the bot installation charges. 

For the above case,

ROI = (Gains through bot – maintenance charge)/(maintenance charge)

ROI = ($63,000 – $3,647)/($3,647)

ROI = 16.3 or 1630%

Using this method, you can build your own chatbot ROI calculator considering your own business parameters.

NLP and AI-powered chatbots can yield a better return on investment. For instance, Religare has incorporated a service chatbot on its Web portal and WhatsApp integration to handle customer queries. It has resulted in 10 times more customer interaction and 5 times more sales conversion.

Conclusion

For the above case, where bots are able to handle 50% of customer queries, there’s a direct 50% capital gain to the organization. The human-time saved can be utilized for more productive tasks, which can eventually accelerate the organization’s productivity. 

Powerful bots result in better success rates for customer facing operations. For example, Diageo’s iDia chatbot has led to a 55% drop in help desk tickets. 

Here are more enterprise chatbot use cases.

Researchers predict that by 2025, chatbots will accomplish more than 90% of the B2C interactions. Also, chatbots can cut operational costs by more than $8 billion per year in the next three years.

AI Chatbot in Insurance Report

AI in Insurance will value at $36B by 2026. Chatbots will occupy 40% of overall deployment, predominantly within customer service roles.
DOWNLOAD REPORT

We specialize in developing industry-specific AI-powered chatbots. Drop us a word at hello@mantralabsglobal.com to learn more.

Cancel

Knowledge thats worth delivered in your inbox

Smart Manufacturing Dashboards: A Real-Time Guide for Data-Driven Ops

Smart Manufacturing starts with real-time visibility.

Manufacturing companies today generate data by the second through sensors, machines, ERP systems, and MES platforms. But without real-time insights, even the most advanced production lines are essentially flying blind.

Manufacturers are implementing real-time dashboards that serve as control towers for their daily operations, enabling them to shift from reactive to proactive decision-making. These tools are essential to the evolution of Smart Manufacturing, where connected systems, automation, and intelligent analytics come together to drive measurable impact.

Data is available, but what’s missing is timely action.

For many plant leaders and COOs, one challenge persists: operational data is dispersed throughout systems, delayed, or hidden in spreadsheets. And this delay turns into a liability.

Real-time dashboards help uncover critical answers:

  • What caused downtime during last night’s shift?
  • Was there a delay in maintenance response?
  • Did a specific inventory threshold trigger a quality issue?

By converting raw inputs into real-time manufacturing analytics, dashboards make operational intelligence accessible to operators, supervisors, and leadership alike, enabling teams to anticipate problems rather than react to them.

1. Why Static Reports Fall Short

  • Reports often arrive late—after downtime, delays, or defects have occurred.
  • Disconnected data across ERP, MES, and sensors limits cross-functional insights.
  • Static formats lack embedded logic for proactive decision support.

2. What Real-Time Dashboards Enable

Line performance and downtime trends
Track OEE in real time and identify underperforming lines.

Predictive maintenance alerts
Utilize historical and sensor data to identify potential part failures in advance.

Inventory heat maps & reorder thresholds
Anticipate stockouts or overstocks based on dynamic reorder points.

Quality metrics linked to operator actions
Isolate shifts or procedures correlated with spikes in defects or rework.

These insights allow production teams to drive day-to-day operations in line with Smart Manufacturing principles.

3. Dashboards That Drive Action

Role-based dashboards
Dashboards can be configured for machine operators, shift supervisors, and plant managers, each with a tailored view of KPIs.

Embedded alerts and nudges
Real-time prompts, like “Line 4 below efficiency threshold for 15+ minutes,” reduce response times and minimize disruptions.

Cross-functional drill-downs
Teams can identify root causes more quickly because users can move from plant-wide overviews to detailed machine-level data in seconds.

4. What Powers These Dashboards

Data lakehouse integration
Unified access to ERP, MES, IoT sensor, and QA systems—ensuring reliable and timely manufacturing analytics.

ETL pipelines
Real-time data ingestion from high-frequency sources with minimal latency.

Visualization tools
Custom builds using Power BI, or customized solutions designed for frontline usability and operational impact.

Smart Manufacturing in Action: Reducing Market Response Time from 48 Hours to 30 Minutes

Mantra Labs partnered with a North American die-casting manufacturer to unify its operational data into a real-time dashboard. Fragmented data, manual reporting, delayed pricing decisions, and inconsistent data quality hindered operational efficiency and strategic decision-making.

Tech Enablement:

  • Centralized Data Hub with real-time access to critical business insights.
  • Automated report generation with data ingestion and processing.
  • Accurate price modeling with real-time visibility into metal price trends, cost impacts, and customer-specific pricing scenarios. 
  • Proactive market analysis with intuitive Power BI dashboards and reports.

Business Outcomes:

  • Faster response to machine alerts
  • Quality incidents traced to specific operator workflows
  • 4X faster access to insights led to improved inventory optimization.

As this case shows, real-time dashboards are not just operational tools—they’re strategic enablers. 

(Learn More: Powering the Future of Metal Manufacturing with Data Engineering)

Key Takeaways: Smart Manufacturing Dashboards at a Glance

AspectWhat You Should Know
1. Why Static Reports Fall ShortDelayed insights after issues occur
Disconnected systems (ERP, MES, sensors)
No real-time alerts or embedded decision logic
2. What Real-Time Dashboards EnableTrack OEE and downtime in real-time
Predictive maintenance using sensor data
Dynamic inventory heat maps
Quality linked to operators
3. Dashboards That Drive ActionRole-based views (operator to CEO)
Embedded alerts like “Line 4 down for 15+ mins”
Drilldowns from plant-level to machine-level
4. What Powers These DashboardsUnified Data Lakehouse (ERP + IoT + MES)
Real-time ETL pipelines
Power BI or custom dashboards built for frontline usability

Conclusion

Smart Manufacturing dashboards aren’t just analytics tools—they’re productivity engines. Dashboards that deliver real-time insight empower frontline teams to make faster, better decisions—whether it’s adjusting production schedules, triggering preventive maintenance, or responding to inventory fluctuations.

Explore how Mantra Labs can help you unlock operations intelligence that’s actually usable.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot