Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(6)

Manufacturing(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(33)

Technology Modernization(9)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(41)

Insurtech(67)

Product Innovation(59)

Solutions(22)

E-health(12)

HealthTech(25)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(154)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(8)

Computer Vision(8)

Data Science(24)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

React 18: From A Developer’s PoV

React 18, the much-awaited version of React is out with exciting features like automatic batching, a new API –startTransition, and streaming server-side rendering with support for Suspense. What’s so special about this newer version is its unique “concurrent rendering” method. In the earlier versions of React, the rendering process was synchronous and non-interruptible where the UI would lock during long render processes and not respond to user input instantly. Using React 18, the rendering process can be made asynchronous and can be interrupted, paused, resumed, and even abandoned enabling developers to create a more fluid user experience.

How to update from React 17 to React 18?

React 18 is currently released in alpha and can be downloaded using the command 

image2.png

A component is usually rendered like this

image4.png

However, to utilize the latest features, components need to be rendered like this:

image3.png

What’s there in React 18?

Automatic Batching

Automatic Batching is the rendering that occurs at the same time whenever triggered to update with multiple states at once. The previous version of React could only batch updates inside React event handlers. If the multiple state updates are triggered by a promise or a callback, their responses are not rendered at the same time. But with React 18, all renders are batched, meaning they’ll occur at the same time, regardless of their trigger.

image12.png

Here’s an example with a promise:

image5.png

Suspense

With Suspense, React 18 makes major performance improvements to SSR by making serving parts of an app asynchronously possible. Suspense helps in specifying what React should show when a part of the tree isn’t ready to render. For instance, in case there are four components: a Header, a Sidebar, a Banner component, and the Main component. If all four of them are stacked on each other like this 

image9.png

Then, the server would try to render them at once, slowing the entire page down. If the Header, the Sidebar, and the Main are more important for the readers, one can prioritize these over the Banner by wrapping the Banner component in Suspense tags:

image6.png

As a result, the server would first serve the Header, Side Bar, and Main component, and then a spinner would be displayed while the Banner waits to load.

Transitions

React apps are interactive, however, to make an app update itself as people interact with it, constant updating might cause the app to slow down significantly and give a poor user experience. Transition is a new React feature that differentiates between urgent and non-urgent updates. Transition updates transform the UI from one view to the next.

  • Urgent updates are the direct interactions like typing, clicking, pressing, etc., that need immediate response to match one’s intuition about how physical objects behave. Otherwise, they feel “wrong”. However, transitions are different because the user doesn’t expect to see every intermediate value on the screen. 

Single-user input should typically result in both an urgent and a non-urgent update for the best user experience. StartTransition API can be used inside an input event to tell React which updates are urgent and which are “transitions”.

image8.png
  • Non-urgent updates are wrapped in ‘startTransition’ and would get interrupted if more urgent updates, such as clicks or keypresses, emerge. If a user interrupts a transition (for example, by typing multiple characters in a row), React will discard any stale rendering work and render only the most recent update.

New Hooks

  1. UseId

useId is a new hook for creating unique IDs on both the client and the server while avoiding hydration mismatches. It’s most beneficial for component libraries that need to integrate with accessibility APIs that require unique IDs. This addresses a major problem that existed in React 17 and in its previous versions, but it’s even more critical in React 18 because of how the new streaming server renderer delivers HTML out-of-order.

image10.png

 

  1. useTransition

‘useTransition’ and ‘startTransition’ would allow marking some state updates as not urgent. By default, other state updates are considered urgent. React would allow urgent state updates (for example, updating a text input) to interrupt the non-urgent state updates (for example, count results).

image11.png

 

  1. useSyncExternalStore

‘useSyncExternalStore’ is a new hook that enables external stores to support concurrent reads by forcing updates to the store to be synchronous. It eliminates the necessity for useEffect when implementing subscriptions to external data sources, and is recommended for any library that integrates with a state external to React.

image7.png

 

  1. useDeferredValue

‘useDeferredValue’ helps to delay re-rendering a non-urgent part of the tree. It works in the same way as debouncing, although it offers a few advantages. React will attempt the deferred render directly after the initial render is reflected on the screen because there is no predetermined time delay. The deferred render is interruptible and doesn’t block user input.

image13.png

 

 

  1. useInsertionEffect

‘useInsertionEffect’ is a new hook that allows CSS-in-JS libraries to address the performance difficulties of injecting styles in the render. Unless you’ve already built a CSS-in-JS library we don’t expect you to ever use this. This hook will activate after the DOM is mutated, but before layout effects read the new layout. useInsertionEffect is even more important in React 18 because React yields to the browser during concurrent rendering, giving it a chance to recalculate the layout.

image1.png

Conclusion

With the introduction of React 18, there has been a drastic change in the world of web applications because of its unique offerings like concurrent mode and server-side rendering. The latest feature would make it easier to develop and maintain a code as well as make apps faster and more responsive to user interactions.

About the author:

Manikandan is a Technical Lead at Mantra Labs working on React/Angular-related projects. He is interested in learning about stock analyst trading algorithms, and in his free time, he loves to swim, cook, and play cricket and chess.

Cancel

Knowledge thats worth delivered in your inbox

Smart Manufacturing Dashboards: A Real-Time Guide for Data-Driven Ops

Smart Manufacturing starts with real-time visibility.

Manufacturing companies today generate data by the second through sensors, machines, ERP systems, and MES platforms. But without real-time insights, even the most advanced production lines are essentially flying blind.

Manufacturers are implementing real-time dashboards that serve as control towers for their daily operations, enabling them to shift from reactive to proactive decision-making. These tools are essential to the evolution of Smart Manufacturing, where connected systems, automation, and intelligent analytics come together to drive measurable impact.

Data is available, but what’s missing is timely action.

For many plant leaders and COOs, one challenge persists: operational data is dispersed throughout systems, delayed, or hidden in spreadsheets. And this delay turns into a liability.

Real-time dashboards help uncover critical answers:

  • What caused downtime during last night’s shift?
  • Was there a delay in maintenance response?
  • Did a specific inventory threshold trigger a quality issue?

By converting raw inputs into real-time manufacturing analytics, dashboards make operational intelligence accessible to operators, supervisors, and leadership alike, enabling teams to anticipate problems rather than react to them.

1. Why Static Reports Fall Short

  • Reports often arrive late—after downtime, delays, or defects have occurred.
  • Disconnected data across ERP, MES, and sensors limits cross-functional insights.
  • Static formats lack embedded logic for proactive decision support.

2. What Real-Time Dashboards Enable

Line performance and downtime trends
Track OEE in real time and identify underperforming lines.

Predictive maintenance alerts
Utilize historical and sensor data to identify potential part failures in advance.

Inventory heat maps & reorder thresholds
Anticipate stockouts or overstocks based on dynamic reorder points.

Quality metrics linked to operator actions
Isolate shifts or procedures correlated with spikes in defects or rework.

These insights allow production teams to drive day-to-day operations in line with Smart Manufacturing principles.

3. Dashboards That Drive Action

Role-based dashboards
Dashboards can be configured for machine operators, shift supervisors, and plant managers, each with a tailored view of KPIs.

Embedded alerts and nudges
Real-time prompts, like “Line 4 below efficiency threshold for 15+ minutes,” reduce response times and minimize disruptions.

Cross-functional drill-downs
Teams can identify root causes more quickly because users can move from plant-wide overviews to detailed machine-level data in seconds.

4. What Powers These Dashboards

Data lakehouse integration
Unified access to ERP, MES, IoT sensor, and QA systems—ensuring reliable and timely manufacturing analytics.

ETL pipelines
Real-time data ingestion from high-frequency sources with minimal latency.

Visualization tools
Custom builds using Power BI, or customized solutions designed for frontline usability and operational impact.

Smart Manufacturing in Action: Reducing Market Response Time from 48 Hours to 30 Minutes

Mantra Labs partnered with a North American die-casting manufacturer to unify its operational data into a real-time dashboard. Fragmented data, manual reporting, delayed pricing decisions, and inconsistent data quality hindered operational efficiency and strategic decision-making.

Tech Enablement:

  • Centralized Data Hub with real-time access to critical business insights.
  • Automated report generation with data ingestion and processing.
  • Accurate price modeling with real-time visibility into metal price trends, cost impacts, and customer-specific pricing scenarios. 
  • Proactive market analysis with intuitive Power BI dashboards and reports.

Business Outcomes:

  • Faster response to machine alerts
  • Quality incidents traced to specific operator workflows
  • 4X faster access to insights led to improved inventory optimization.

As this case shows, real-time dashboards are not just operational tools—they’re strategic enablers. 

(Learn More: Powering the Future of Metal Manufacturing with Data Engineering)

Key Takeaways: Smart Manufacturing Dashboards at a Glance

AspectWhat You Should Know
1. Why Static Reports Fall ShortDelayed insights after issues occur
Disconnected systems (ERP, MES, sensors)
No real-time alerts or embedded decision logic
2. What Real-Time Dashboards EnableTrack OEE and downtime in real-time
Predictive maintenance using sensor data
Dynamic inventory heat maps
Quality linked to operators
3. Dashboards That Drive ActionRole-based views (operator to CEO)
Embedded alerts like “Line 4 down for 15+ mins”
Drilldowns from plant-level to machine-level
4. What Powers These DashboardsUnified Data Lakehouse (ERP + IoT + MES)
Real-time ETL pipelines
Power BI or custom dashboards built for frontline usability

Conclusion

Smart Manufacturing dashboards aren’t just analytics tools—they’re productivity engines. Dashboards that deliver real-time insight empower frontline teams to make faster, better decisions—whether it’s adjusting production schedules, triggering preventive maintenance, or responding to inventory fluctuations.

Explore how Mantra Labs can help you unlock operations intelligence that’s actually usable.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot