Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(6)

Manufacturing(4)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(33)

Technology Modernization(9)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(41)

Insurtech(67)

Product Innovation(59)

Solutions(22)

E-health(12)

HealthTech(25)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(154)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(8)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

The Million-Dollar AI Mistake: What 80% of Enterprises Get Wrong

When we hear million-dollar AI mistakes, the first thought is: What could it be? Was it a massive investment in the wrong technology? Did a critical AI application go up in flames? Or was it an overhyped solution that failed to deliver on its promises? Spoiler alert: it’s often all of these—and more. From overlooked data science issues to misaligned business goals and poorly defined AI projects, failures are a mix of preventable errors.

Remember Blockbuster? They had multiple chances to embrace advanced technology like streaming but stuck to their old model, ignoring the shifting landscape. The result? Netflix became a giant while Blockbuster faded into history. AI failures follow a similar pattern—when businesses fail to adapt their processes, even the most innovative AI tools turn into liabilities. Gartner reports nearly 80% of AI projects fail, costing millions. How do companies, with all their resources and brainpower manage to bungle something as transformative as AI?

1. Investing Without a Clear Goal

Enterprises often treat artificial intelligence as a must-have accessory rather than a strategic tool. “If our competitors have it, we need it too!” they exclaim, rushing into adoption without asking why. The result? Expensive systems that yield no measurable business outcomes. Without aligning AI’s capabilities—like natural language processing or generative AI solutions—with goals such as boosting customer experience or driving operational efficiency, AI becomes just another line item in the budget.

2. Data Woes

AI is only as smart as the data it’s fed. Yet, many enterprises underestimate the importance of clean, structured, and unbiased data. They plug in inconsistent or incomplete data and expect groundbreaking insights. The result? AI models that churn out unreliable or even harmful outcomes.

Case in Point: A faulty ATS filtered for outdated AngularJS skills, rejecting all applicants, including a manager’s fake CV. The error, unnoticed due to blind reliance on AI, cost the HR team their jobs—a stark reminder that human oversight is critical in AI systems.

3. Underestimating the Human Element

AI might be powerful, but it does not replace human judgment.  Whether it’s an AI assistant like Claude AI or OpenAI’s ChatGPT API, Enterprises often overlook the need for human oversight and fail to train employees on how to interact with AI systems. What you get is either blind trust in algorithms or complete resistance from employees, both of which spell trouble.

4. Stuck in Experiment Mode

AI adoption often stagnates when businesses fixate on piloting instead of scaling. Tools like DALL-E or MidJourney may excel in proofs of concept but lack enterprise-wide integration. This leaves companies in an endless cycle of testing AI applications, wasting resources without realizing full-scale business value.

5. Ignoring Change Management

Transitioning to AI technology is as much about organizational culture as it is about deploying AI models. Mismanagement, such as overlooking ethical AI considerations or failing to explain AI’s impact on roles, leads to resistance. Whether it’s a small chatbot AI tool or full-scale AI automation, fostering employee buy-in is critical.

Source: IBM

How to Avoid These Pitfalls

  1. Start with Strategy: Define clear objectives for adopting artificial intelligence programs.
  2. Invest in Data: Build a robust data infrastructure. Clean, unbiased, and relevant data is the foundation of any successful AI initiative.
  3. Prioritize Education and Oversight: Train teams to work with AI and establish clear guidelines for human-AI collaboration.
  4. Think Big, but Scale Smart: Start with pilots but plan to expand AI in finance, healthcare, operations or other areas from day one.
  5. Focus on Change Management: Communicate the value of tools like AI robots or AI-driven insights to teams at all levels.

Graph of AI adoption across different countries

Source:IBM.com

Mantra Labs is Your AI Partner for Success

At Mantra Labs, we don’t just offer AI solutions—we provide a comprehensive, end-to-end strategy to help businesses adopt the complex process of AI implementation. While implementing AI can lead to transformative outcomes, it’s not a one-size-fits-all solution. True success lies in aligning the right technology with your unique business needs, and that’s where we excel. Whether you’re leveraging AI in healthcare with tools like poly AI or exploring AI trading platforms, we craft custom solutions tailored to your needs.

By addressing challenges like biased AI algorithms or misaligned AI strategies, we ensure you sidestep costly pitfalls. Our approach not only simplifies AI adoption but transforms it into a competitive advantage. Ready to avoid the million-dollar mistake and unlock AI’s full potential? Let’s make it happen—together.

Cancel

Knowledge thats worth delivered in your inbox

NPS in Insurance Claims: What Insurance Leaders Are Doing Differently

Claims are the moment of truth. Are you turning them into moments of loyalty?

In insurance, your app interface might win you downloads. Your pricing might drive conversions.
But it’s the claims experience that decides whether a customer stays—or leaves for good.

According to a survey by NPS Prism, promoters are 2.3 times more likely to renew their insurance policies than passives or detractors—highlighting the strong link between customer advocacy and retention.

NPS in insurance industry is a strong predictor of customer retention. Many insurers are now prioritizing NPS to improve their claims experience.

So, what are today’s high-NPS insurers doing differently? Spoiler: it’s not just about faster payouts.

We’ve worked with claims teams that had best-in-class automation—but still had low NPS. Why? Because the process felt like a black box.
Customers didn’t know where their claim stood. They weren’t sure what to do next. And when money was at stake, silence created anxiety and dissatisfaction.

Great customer experience (CX) in claims isn’t just about speed—it’s about giving customers a sense of control through clear communication and clarity.

The Traditional Claims Journey

  • Forms → Uploads → Phone calls → Waiting
  • No real-time updates
  • No guidance after claim initiation
  • Paper documents and email ping-pong

The result? Frustrated customers and overwhelmed call centers.

The CX Gap: It’s Not Just Speed—It’s Transparency

Customers don’t always expect instant decisions. What they want:

  • To know what’s happening with their claim
  • To understand what’s expected of them
  • To feel heard and supported during the process

How NPS Leaders Are Winning Loyalty with CX-Driven Claims and High NPS

Image Source: NPS Prism

1. Real-Time Status Updates

Transparency to the customer via mobile app, email, or WhatsApp—keeping them in the loop with clear milestones. 

2. Proactive Nudges

Auto-reminders, such as “upload your medical bill” or “submit police report,” help close matters much faster and avoid back-and-forth.

3. AI-Powered Document Uploads

Single-click scans with OCR + AI pull data instantly—no typing, no errors.

4. In-the-Moment Feedback Loops

Simple post-resolution surveys collect sentiment and alert on issues in real time.

For e.g., Lemonade uses emotional AI to detect customer sentiment during the claims process, enabling empathetic responses that boost satisfaction and trust.

Smart Nudges from Real-Time Journey Tracking

For a leading insurance firm, we mapped the entire in-app user journey—from buying or renewing a policy to initiating a claim or checking discounts. This helped identify exactly where users dropped off. Based on real-time activity, we triggered personalized notifications and offers—driving better engagement and claim completion rates.

Tech Enablement

  • Claims Orchestration Layer: Incorporates legacy systems, third-party tools, and front-end apps for a unified experience.
  • AI & ML Models: For document validation, fraud detection, and claim routing, sentiment analysis is used. Businesses utilizing emotional AI report a 25% increase in customer satisfaction and a 30% decrease in complaints, resulting in more personalized and empathetic interactions.
  • Self-Service Portals: Customers can check their status, update documents, and track payouts—all without making a phone call.

Business Impact

What do insurers gain from investing in CX?

A faster claim is good. But a fair, clear, and human one wins loyalty.

And companies that consistently track and act on CX metrics are better positioned to retain customers and build long-term loyalty.

At Mantra Labs, we help insurers build end-to-end, tech-enabled claims journeys that delight customers and drive operational efficiency.
From intelligent document processing to AI-led nudges, we design for empathy at scale.

Want a faster and more transparent claims experience?

Let’s design it together.
Talk to our insurance transformation team today.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot