10%

Try : Insurtech, Application Development

Edtech(5)

Events(34)

Interviews(10)

Life@mantra(11)

Logistics(1)

Strategy(14)

Testing(8)

Android(45)

Backend(29)

Dev Ops(2)

Enterprise Solution(22)

Frontend(28)

iOS(40)

Javascript(13)

Augmented Reality(17)

Customer Journey(12)

Design(13)

User Experience(34)

AI in Insurance(31)

Insurtech(59)

Product Innovation(37)

Solutions(15)

E-health(3)

HealthTech(8)

mHealth(3)

Telehealth Care(1)

Telemedicine(1)

Artificial Intelligence(109)

Bitcoin(7)

Blockchain(18)

Cognitive Computing(7)

Computer Vision(8)

Data Science(14)

FinTech(44)

Intelligent Automation(26)

Machine Learning(46)

Natural Language Processing(13)

What is Blockchain Technology?

“Bitcoin is just one example of something that uses a blockchain. Cryptocurrencies are just one example of decentralized technologies. And now that the Internet is big enough and diverse enough, I think we will see different flavors of decentralized technologies and blockchains. I think decentralized networks will be the next huge wave in technology. The blockchain allows our smart devices to speak to each other better and faster.” Melanie Swan, author of Blockchain: Blueprint for a New Economy by Swan, Melanie (2015) Paperback

Blockchain is now making the biggest revolution in the finance industry. As a technologist, we should evaluate and apply the concept of Blockchain without thinking Cryptocurrency. It can unveil many possibilities and can lead to innovations. Cryptocurrency is becoming a distraction to the possibilities of blockchain as people have started using terminologies vice-versa.

What is blockchain technology and why it is safe?

Blockchain provides a protocol for building a shared, replicated and distributed online ledger network. Each participant in this blockchain network maintains their own copy of that database, or collection of organized information.

If you simply put,  blockchain is made up of a series of blocks of data that are securely tied together. Since all records are connected to each other, they are entrenched. It is impossible to modify or alter a previous record without changing the copy of every participant in the blockchain.

Read here to understand the concept of blockchain technology?

There are some disruptions too!

Contracts, transactions, and ledger are the defining structures which set the boundaries of our economic, legal and political systems. Today these involve people and corruption. With blockchain, contracts can be embedded in digital codes, stored in shared databases, protected from tampering.

Blockchain may be disruptive, but the question is if it’s too disruptive for its own good.

Although blockchain is one of the hottest and intriguing technologies currently in the market but it comes with its own challenges. Many business leaders and industrialists are skeptical about blockchain.

Let’s see what are those skeptics:

  • It will be hard for established business in the industry where blockchain will push uncomfortable transparency which can lead to price corrections and change in business models. It can be so much disruption that it can lead to the foundation of new technologies.
  • Adoption problem of Blockchain technology
  • Time-consuming: Blockchain-based transactions can only complete when all parties update their respective ledgers – which is a very time-consuming process.

 

Eight reasons to be skeptical about blockchain.

Cancel

Knowledge thats worth delivered in your inbox

Implementing a Clean Architecture with Nest.JS

4 minutes read

This article is for enthusiasts who strive to write clean, scalable, and more importantly refactorable code. It will give an idea about how Nest.JS can help us write clean code and what underlying architecture it uses.

Implementing a clean architecture with Nest.JS will require us to first comprehend what this framework is and how it works.

What is Nest.JS?

Nest or Nest.JS is a framework for building efficient, scalable Node.js applications (server-side) built with TypeScript. It uses Express or Fastify and allows a level of abstraction to enable developers to use an ample amount of modules (third-party) within their code.

Let’s dig deeper into what is this clean architecture all about. 

Well, you all might have used or at least heard of MVC architecture. MVC stands for Model, View, Controller. The idea behind this is to separate our project structure into 3 different sections.

1. Model: It will contain the Object file which maps with Relation/Documents in the DB.

2. Controller: It is the request handler and is responsible for the business logic implementation and all the data manipulation.

3. View: This part will contain files that are concerned with the displaying of the data, either HTML files or some templating engine files.

To create a model, we need some kind of ORM/ODM tool/module/library to build it with. For instance, if you directly use the module, let’s say ‘sequelize’, and then use the same to implement login in your controller and make your core business logic dependent upon the ‘sequelize’. Now, down the line, let’s say after 10 years, there is a better tool in the market that you want to use, but as soon as you replace sequelize with it, you will have to change lots of lines of code to prevent it from breaking. Also, you’ll have to test all the features once again to check if it’s deployed successfully or not which may waste valuable time and resource as well. To overcome this challenge, we can use the last principle of SOLID which is the Dependency Inversion Principle, and a technique called dependency injection to avoid such a mess.

Still confused? Let me explain in detail.

So, what Dependency Inversion Principle says in simple words is, you create your core business logic and then build dependency around it. In other words, free your core logic and business rules from any kind of dependency and modify the outer layers in such a way that they are dependent on your core logic instead of your logic dependent on this. That’s what clean architecture is. It takes out the dependency from your core business logic and builds the system around it in such a way that they seem to be dependent on it rather than it being dependent on them.

Let’s try to understand this with the below diagram.

Source: Clean Architecture Cone 

You can see that we have divided our architecture into 4 layers:

1. Entities: At its core, entities are the models(Enterprise rules) that define your enterprise rules and tell what the application is about. This layer will hardly change over time and is usually abstract and not accessible directly. For eg., every application has a ‘user’. What all fields the user should store, their types, and relations with other entities will comprise an Entity.

2. Use cases: It tells us how can we implement the enterprise rules. Let’s take the example of the user again. Now we know what data to be operated upon, the use case tells us how to operate upon this data, like the user will have a password that needs to be encrypted, the user needs to be created, and the password can be changed at any given point of time, etc.

3. Controllers/Gateways: These are channels that help us to implement the use cases using external tools and libraries using dependency injection.

4. External Tools: All the tools and libraries we use to build our logic will come under this layer eg. ORM, Emailer, Encryption, etc.

The tools we use will be depending upon how we channel them to use cases and in turn, use cases will depend upon the entities which is the core of our business. This way we have inverted the dependency from outwards to inwards. That’s what the Dependency Inversion Principal of SOLID implies.

Okay, by now, you got the gist of Nest.JS and understood how clean architecture works. Now the question arises, how these two are related?  

Let’s try to understand what are the 3 building blocks of Nest.JS and what each of them does.

  1. Modules: Nest.JS is structured in such a way that we can treat each feature as a module. For eg., anything which is linked with the User such as models, controllers, DTOs, interfaces, etc., can be separated as a module. A module has a controller and a bunch of providers which are injectible functionalities like services, orm, emailer, etc.
  1. Controllers: Controllers in Nest.JS are interfaces between the network and your logic. They are used to handle requests and return responses to the client side of the application (for example, call to the API).
  1. Providers (Services): Providers are injectable services/functionalities which we can inject into controllers and other providers to provide flexibility and extra functionality. They abstract any form of complexity and logic.

To summarize,

  • We have controllers that act as interfaces (3rd layer of clean architecture)
  • We have providers which can be injected to provide functionality (4th layer of clean architecture: DB, Devices, etc.)
  • We can also create services and repositories to define our use case (2nd Layer)
  • We can define our entities using DB providers (1st Layer)

Conclusion:

Nest.JS is a powerful Node.JS framework and the most well-known typescript available today. Now that you’ve got the lowdown on this framework, you must be wondering if we can use it to build a project structure with a clean architecture. Well, the answer is -Yes! Absolutely. How? I’ll explain in the next series of this article. 

Till then, Stay tuned!

About the Author:

Junaid Bhat is currently working as a Tech Lead in Mantra Labs. He is a tech enthusiast striving to become a better engineer every day by following industry standards and aligned towards a more structured approach to problem-solving. 


Read our latest blog: Golang-Beego Framework and its Applications

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
bot

May i help you?

bot shadow