Try : Insurtech, Application Development

Edtech(3)

Events(27)

Life@mantra(8)

Logistics(1)

Strategy(6)

Testing(4)

Android(42)

Backend(29)

Dev Ops(2)

Enterprise Solution(12)

Frontend(29)

iOS(37)

Javascript(13)

Augmented Reality(7)

Customer Journey(7)

Design(5)

User Experience(19)

AI in Insurance(19)

Insurtech(47)

Product Innovation(27)

Solutions(6)

Artificial Intelligence(79)

Bitcoin(7)

Blockchain(14)

Cognitive Computing(6)

Computer Vision(5)

Data Science(11)

FinTech(38)

Intelligent Automation(19)

Machine Learning(41)

Natural Language Processing(5)

AI Use Cases for Data-driven Reinsurers

Across the Insurance expansile, a special fraction within the industry is notable for its embrace of new technologies ahead of others. For an industry that notoriously keeps a straggling pace behind its banking and financial peers, Reinsurance has conventionally demonstrated a greater proclivity for future-proofing itself. In fact, they were one of the first to adopt cat-modelling techniques in the early ’90s to predict and assess risk.  This makes perfect sense too — ‘Insurance for insurers’ or reinsurance is the business of risk evaluation of the highest grade — which means there are hundreds of billions of dollars more at stake. 

Front-line insurers typically practice transferring some amount of their risk portfolio to reduce the likelihood of paying enormous claims in the event of unforeseen catastrophe losses. For most regions of the World — wind and water damage through thunderstorms, torrential rains, and snowmelt caused the highest losses in 2019.

In the first half of 2019 itself, global economic losses from natural catastrophes and man-made disasters totalled $44 billion, according to Swiss Re Institute’s sigma estimates. $25 billion of that total was covered by reinsurers. Without the aid of reinsurance absorbing most of that risk and spreading it out, insurance companies would have had to fold. This is how reinsurance protects front-line insurers from unforeseen events in the first place.

Yet, protection gaps, especially in emerging economies still trails behind. Only about 42 per cent of the global economic losses were insured as several large-scale disaster events, such as Cyclone Idai in southern Africa and Cyclone Fani in India, occurred in areas with low insurance penetration.

Reinsurance can be an arduous and unpredictable business. To cope with a prolonged soft market, declining market capital and shaky investor confidence — reinsurers have to come up with new models to boost profitability and add value to their clients.

For them, this is where Artificial Intelligence and the sisterhood of data-driven technologies is bringing back their edge.


Source: PwC – AI in Insurance Report

AI Use Cases for Reinsurers 

Advanced Catastrophe Risk Modelling

Catastrophic models built on machine learning models trained on real claims data, and ethno- and techno-graphic parameters can decisively improve the authenticity of risk assessments. The models are useful tools for forecasting losses and can predict accurate exposure for clients facing a wide range of natural and man-made risks.

Mining Data for behavioural risks can also inform reinsurers about adjusting and arranging their reinsurance contracts. For example, Tianjin Port explosions of 2015 resulted in losses largely due to risk accumulation — more specifically accumulation of cargo at the port. Static risks like these can be avoided by using sensors to tag and monitor assets in real-time.

RPA-based outcomes for reducing operational risks

RPA coupled with smart data extraction tools can handle a high volume of repetitive human tasks that requires problem-solving aptitude. This is especially useful when manually dealing with data stored in disparate formats. Large reinsurers can streamline critical operations and free employee capacity. Automation can reduce turn-around-times for price/quote setting in reinsurance contracts. Other extended benefits of process automation include: creating single view documentation and tracking, faster reconciliation and account settlement time, simplifying the bordereau and recovery management process, and the technical accounting of premium and claims.

Take customised reinsurance contracts for instance that are typically put together manually. Although these contracts provide better financial risk control, yet due to manual administration and the complex nature of such contracts — the process is prone to errors. By creating a system that can connect to all data sources via a single repository (data lake), the entire process can be automated and streamlined to reduce human-related errors.

Risk identification & Evaluation of emerging risks

Adapting to the risk landscape and identifying new potential risks is central to the functioning of reinsurance firms. For example, if reinsurance companies are not interested in covering Disaster-related insurance risks, then the insurance companies will no longer offer this product to the customer because they don’t have sufficient protection to sell the product. 

According to a recent research paper, the reinsurance contract is more valuable when the catastrophe is more severe and the reinsurer’s default risk is lower. Predictive modelling with more granular data can help actuaries build products for dynamic business needs, market risks and concentrations. By projecting potential future costs, losses, profits and claims — reinsurers can dynamically adjust their quoted premiums. 

Portfolio Optimization


During each renewal cycle, underwriters and top executives have to figure out: how to improve the performance of their portfolios? To carry this out, they need to quickly assess in near real-time the impact of making changes to these portfolios. Due to the large number of new portfolio combinations that can be created (that run in the hundreds of millions), this task is beyond the reach of pure manual effort. 


To effectively run a model like this, machine learning can shorten the decision making time by sampling selective combinations and by running multi-objective, multi-restraint optimization models as opposed to the less popular linear optimization method.  Portfolio optimization fueled by advanced data-driven models can reveal hidden value to an underwriting team. Such models can also predict with great accuracy how portfolios will perform in the face of micro or macro changes.

Repetitive and iterative sampling of the possible combinations can be carried out to create a narrowed down set of best solutions from an extremely large pool of portfolio options. This is how the most optimal portfolio that maximizes profits and reduces risk liability, is chosen. 

Reinsurance Outlook in India 

The size of the Indian non-life market, which is more reinsurance intensive than life, is around $17.7B, of which nearly $4B is given out as reinsurance premium. Insurance products in India are mainly modeled around earthquakes and terrorism, with very few products covering floods. Mass retail sectors such as auto, health and small/medium property businesses are the least reinsurance dependant. As the industry continues to expand in the subcontinent, an AI-backed data-driven approach will prove to be the decisive leverage for reinsurers in the hunt for new opportunities beyond 2020. 

Also read – Why InsurTech beyond 2020 will be different

Cancel

Knowledge thats worth delivered in your inbox

Across the Insurance ecosystem, a special fraction within the industry is noteworthy for its adoption of new technologies ahead of others. However slow but sure, uberization of insurance has conventionally demonstrated a greater inclination towards digitization. Insurers now more than ever, need big data-driven insights to assess risk, reduce claims, and create value for their customers. 

92% of the C-Level Executives are increasing their pace of investment in big data and AI.

NewVantage Partners Executive Survey 2019 

Artificial Intelligence has brought about revolutionary benefits in the Insurance industry.

AI enriched solutions can remove the ceiling caps on collaboration, removes manual dependencies and report errors.

However, organizations today are facing a lot of challenges in reaping the actual benefits of AI.

5 Challenges for AI implementation for Insurers

5 AI Implementation Challenges in Insurance

Lack of Quality training data

AI can improve productivity and help in decision making through training datasets. According to the survey of the Dataconomy, nearly 81% of 225 data scientists found the process of AI training more difficult than expected even with the data they had. Around 76% were struggling to label and interpret the training data.

Clean vision, Process, and Support from Executive Leadership

AI is not a one time process. Maximum benefits can be reaped out of AI through clear vision, dedicated time, patience and guided leadership from industry experts and AI thought leaders.

Data in-silos

Organizational silos are ill-advised and are proven constrictive barriers to operational productivity & efficiency. Most businesses that have data kept in silos face challenges in collaboration, execution, and measurement of their bigger picture goals. 

Technology & Vendor selection

AI has grown sharp enough to penetrate through the organizations. As AI success stories are becoming numerous investment in AI is also getting higher. However big the hype is, does AI implementation suits your business process or not – is the biggest question. The insurtech industries have continued its growth trajectory in 2019; reaching a funding of $6B. With the help of these insurtech service firms, Insurance organizations have made progress, tackling the age-old insurance ills with AI-powered innovations.

People, Expertise and Technical competency

‘Skills and talent’ in the field of AI is the main barrier for AI transformation in their business.

Still playing catch-up to the US, China, and Japan — India has doubled its AI  workforce over the past few years to nearly 72,000 skilled professionals in 2019. 

Are you facing challenges with your Insurance process but have no idea where the disconnect is? Is your Insurance business process ripe for AI in the year 2020?

What is the right approach?

Join our Webinar — AI for Data-driven Insurers: Challenges, Opportunities & the Way Forward hosted by our CEO, Parag Sharma as he addresses Insurance business leaders on the 13th of February, 2020.

Register for the live webinar by Parag Sharma (AI Thought Leader & CEO Mantra Labs). 

Cancel

Knowledge thats worth delivered in your inbox

Ratemaking, or insurance pricing, is the process of fixing the rates or premiums that insurers charge for their policies. In insurance parlance, a unit of insurance represents a certain monetary value of coverage. Insurance companies usually base these on risk factors such as gender, age, etc. The Rate is simply the price per ‘unit of insurance’ for each unit exposed to liability. 

Typically, a unit of insurance (both in life and non-life) is equal to $1,000 worth of liability coverage. By that token, for 200 units of insurance purchased the liability coverage is $200,000. This value is the insurance ‘premium’. (This example is only to demonstrate the logic behind units of exposure, and is not an exact method for calculating premium value)

The cost of providing insurance coverage is actually unknown, which is why insurance rates are based on the predictions of future risk.  

Actuaries work wherever risk is present

Actuarial skills help measure the probability and risk of future events by understanding the past. They accomplish this by using probability theory, statistical analysis, and financial mathematics to predict future financial scenarios. 

Insurers rely on them, among other reasons, to determine the ‘gross premium’ value to collect from the customer that includes the premium amount (described earlier), a charge for covering losses and expenses (a fixture of any business) and a small margin of profit (to stay competitive). But insurers are also subject to regulations that limit how much they can actually charge customers. Being highly skilled in maths and statistics the actuary’s role is to determine the lowest possible premium that satisfies both the business and regulatory objectives.

Risk-Uncertainty Continuum

Source: Sam Gutterman, IAA Risk Book

Actuaries are essentially experts at managing risk, and owing to the fact that there are fewer actuaries in the World than most other professions — they are highly in demand. They lend their expertise to insurance, reinsurance, actuarial consultancies, investment, banking, regulatory bodies, rating agencies and government agencies. They are often attributed to the middle office, although it is not uncommon to find active roles in both the ‘front and middle’ office. 

Recently, they have also found greater roles in fast growing Internet startups and Big-Tech companies that are entering the insurance space. Take Gus Fuldner for instance, head of insurance at Uber and a highly sought after risk expert, who has a four-member actuarial team that is helping the company address new risks that are shaping their digital agenda. In fact, Uber believes in using actuaries with data science and predictive modelling skills to identify solutions for location tracking, driver monitoring, safety features, price determination, selfie-test for drivers to discourage account sharing, etc., among others.

Also read – Are Predictive Journeys moving beyond the hype?

Within the General Actuarial practice of Insurance there are 3 main disciplines — Pricing, Reserving and Capital. Pricing is prospective in nature, and it requires using statistical modelling to predict certain outcomes such as how much claims the insurer will have to pay. Reserving is perhaps more retrospective in nature, and involves applying statistical techniques for identifying how much money should be set aside for certain liabilities like claims. Capital actuaries, on the other hand, assess the valuation, solvency and future capital requirements of the insurance business.

New Product Development in Insurance

Insurance companies often respond to a growing market need or a potential technological disruptor when deciding new products/ tweaking old ones. They may be trying to address a certain business problem or planning new revenue streams for the organization. Typically, new products are built with the customer in mind. The more ‘benefit-rich’ it is, the easier it is to push on to the customer.

Normally, a group of business owners will first identify a broader business objective, let’s say — providing fire insurance protection for sub-urban, residential homeowners in North California. This may be a class of products that the insurer wants to open. In order to create this new product, they may want to study the market more carefully to understand what the risks involved are; if the product is beneficial to the target demographic, is profitable to the insurer, what is the expected value of claims, what insurance premium to collect, etc.

There are many forces external to the insurance company — economic trends, the agendas of independent agents, the activities of competitors, and the expectations and price sensitivity of the insurance market — which directly affect the premium volume and profitability of the product.

Dynamic Factors Influencing New Product Development in Insurance

Source: Deloitte Insights

To determine insurance rate levels and equitable rating plans, ratemaking becomes essential. Statistical & forecasting models are created to analyze historical premiums, claims, demographic changes, property valuations, zonal structuring, and regulatory forces. Generalized linear models, clustering, classification, and regression trees are some examples of modeling techniques used to study high volumes of past data. 

Based on these models, an actuary can predict loss ratios on a sample population that represents the insurer’s target audience. With this information, cash flows can be projected on the product. The insurance rate can also be calculated that will cover all future loss costs, contingency loads, and profits required to sustain an insurance product. Ultimately, the actuary will try to build a high level of confidence in the likelihood of a loss occurring. 

This blog is a two-part series on new product development in insurance. In the next part, we will take a more focused view of the product development actuary’s role in creating new insurance products.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top

May i help you?

Our Website is
Best Experienced on
Chrome & Safari

safari icon