Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(6)

Manufacturing(4)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(33)

Technology Modernization(9)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(41)

Insurtech(67)

Product Innovation(59)

Solutions(22)

E-health(12)

HealthTech(25)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(154)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(8)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

Generative AI in Banking: A Technological Revolution

According to a report by McKinsey, AI technologies could potentially deliver up to $1 trillion of additional value each year. This highlights the massive potential of Generative AI in revolutionizing the banking industry. It offers solutions to some of the industry’s key challenges such as enhancing customer service, bolstering security, making accurate risk assessments, and providing a personalized banking experience.

Generative AI, as the name suggests, is a form of AI that focuses on generating new instances of data that resemble the input data it was trained on. From creating realistic human faces to composing music, generative AI’s capabilities are truly vast. However, its potential is most palpable in sectors like banking, where constant innovation and adaptability are the keys to maintaining a competitive edge.

Gen AI is more than just ChatGPT, it has wide applications across industries.

Improving CX with AI-powered Customer Support Features

Generative AI is driving a paradigm shift in the way customer service is being delivered in the banking sector. Banks, including global leaders like Bank of America and Wells Fargo, have been using generative AI to develop advanced chatbots and virtual assistants. These AI-driven systems are trained on extensive datasets of customer interactions and are capable of generating personalized and accurate responses to customer queries.

Consider a customer asking, “What is the interest rate on a 30-year fixed mortgage?” The AI chatbot, with its ability to access the latest data from various lenders, can provide an accurate response. Furthermore, it can analyze the customer’s financial situation and provide personalized recommendations, such as potential eligibility for lower interest rates through refinancing.

The use of generative AI in customer service has two primary benefits:

  • Enhanced Customer Experience: With the AI system providing accurate and personalized responses, customers have a better and more satisfying experience.
  • Increased Operational Efficiency: AI handles routine queries, freeing customer service representatives to focus on more complex issues. This not only reduces the burden on human resources but also increases operational efficiency.

To highlight this, let’s take a look at a real-world example: Mantra Labs’ work with Viteos, a leading provider of investment solutions. Viteos’ financial asset management platform provides end-to-end middle and back-office administration for top-tier hedge funds, private equity, private debt, and other alternative asset managers. However, it faced several operational bottlenecks.

Mantra Labs, leveraging its expertise in UI/UX, ETL, and Machine Learning, refined the platform’s user workflows for more robust capabilities and smarter gains. An automated client onboarding solution was integrated, and a machine learning model was developed to analyze historical transactions, trades, and financial data from clients, accounting systems, and banks. This resulted in improved operational efficiency and a significant reduction in bottlenecks.

Using AI to Enhance Security

With the banking sector increasingly moving towards digital platforms, the importance of robust security measures cannot be overstated. Generative AI has emerged as a powerful tool to enhance security measures. Banks are using AI to detect and mitigate potential threats, providing an additional layer of security.

For instance, Capital One has been leveraging the power of generative AI to detect patterns indicative of fraudulent activity among the millions of transactions that occur daily. This real-time analysis and detection of potential fraud have been instrumental in enhancing the bank’s security measures.

Consider the workflow of this process:

  1. The AI system is trained on vast datasets of transactions, learning the intricate patterns of normal behavior.
  2. Once the system has been trained, it can generate new instances of normal behavior.
  3. Any transaction that deviates from these generated instances is flagged as potential fraud.
  4. This proactive approach to security has significantly reduced instances of fraud, thereby protecting the interests of the bank and its customers.

Refining Risk Assessment with Generative AIefining 

Risk assessment is a crucial aspect of banking operations. Traditionally, this has been a complex process involving the analysis of a customer’s financial history, current financial status, and market trends. However, generative AI has brought about a revolution in this area as well. By processing vast volumes of data, AI can make accurate predictions about the likelihood of a loan default. This helps banks make informed decisions and manage their risk more effectively.

Institutions like ING and the State Bank of India (SBI) have successfully integrated generative AI into their risk assessment processes. For instance, SBI’s AI system, aptly named “RiskEye,” analyzes a wealth of historical data and market trends to predict loan default risks. This valuable information aids in sound lending decisions, helping the bank avoid potential losses.

Personalizing the Banking Experience

Another transformative application of generative AI in banking is in the area of personalization. By analyzing a customer’s past transactions, preferences, and behavior, AI systems can generate personalized banking solutions.

Consider JPMorgan Chase’s use of generative AI. Their AI system uses customer data to create a personalized financial plan that suits the customer’s individual needs. This has not only improved customer satisfaction but also increased customer loyalty.

Challenges Still Remain

While generative AI offers immense potential, it also brings certain risks. These include:

  • Model hallucinations: This is when AI models produce authoritative-sounding answers to questions, even when they don’t have enough information to provide an accurate response.
  • “Black box” thinking: This refers to the difficulty in interpreting the output of the AI models or understanding how they produced it.
  • Biased training data: Like any AI solution, the quality of the source data is crucial. Any biases present in the training data can be reflected in the output.

Banks need to move swiftly to leverage AI opportunities, but they must also tread with caution to consider the legal, ethical, and reputational risks.

It’s clear that generative AI is not just another technology; it is setting new standards in banking operations worldwide. As we continue to advance in AI, its role in banking will only become more profound. It’s not just about the technology itself, but how it’s reshaping the entire banking landscape. As we move forward, the focus should be on constant innovation and adaptation to leverage the full potential of generative AI.

Want to read more on Generative AI?

Check our latest blog:

The Role of Generative AI in Healthcare

Cancel

Knowledge thats worth delivered in your inbox

NPS in Insurance Claims: What Insurance Leaders Are Doing Differently

Claims are the moment of truth. Are you turning them into moments of loyalty?

In insurance, your app interface might win you downloads. Your pricing might drive conversions.
But it’s the claims experience that decides whether a customer stays—or leaves for good.

According to a survey by NPS Prism, promoters are 2.3 times more likely to renew their insurance policies than passives or detractors—highlighting the strong link between customer advocacy and retention.

NPS in insurance industry is a strong predictor of customer retention. Many insurers are now prioritizing NPS to improve their claims experience.

So, what are today’s high-NPS insurers doing differently? Spoiler: it’s not just about faster payouts.

We’ve worked with claims teams that had best-in-class automation—but still had low NPS. Why? Because the process felt like a black box.
Customers didn’t know where their claim stood. They weren’t sure what to do next. And when money was at stake, silence created anxiety and dissatisfaction.

Great customer experience (CX) in claims isn’t just about speed—it’s about giving customers a sense of control through clear communication and clarity.

The Traditional Claims Journey

  • Forms → Uploads → Phone calls → Waiting
  • No real-time updates
  • No guidance after claim initiation
  • Paper documents and email ping-pong

The result? Frustrated customers and overwhelmed call centers.

The CX Gap: It’s Not Just Speed—It’s Transparency

Customers don’t always expect instant decisions. What they want:

  • To know what’s happening with their claim
  • To understand what’s expected of them
  • To feel heard and supported during the process

How NPS Leaders Are Winning Loyalty with CX-Driven Claims and High NPS

Image Source: NPS Prism

1. Real-Time Status Updates

Transparency to the customer via mobile app, email, or WhatsApp—keeping them in the loop with clear milestones. 

2. Proactive Nudges

Auto-reminders, such as “upload your medical bill” or “submit police report,” help close matters much faster and avoid back-and-forth.

3. AI-Powered Document Uploads

Single-click scans with OCR + AI pull data instantly—no typing, no errors.

4. In-the-Moment Feedback Loops

Simple post-resolution surveys collect sentiment and alert on issues in real time.

For e.g., Lemonade uses emotional AI to detect customer sentiment during the claims process, enabling empathetic responses that boost satisfaction and trust.

Smart Nudges from Real-Time Journey Tracking

For a leading insurance firm, we mapped the entire in-app user journey—from buying or renewing a policy to initiating a claim or checking discounts. This helped identify exactly where users dropped off. Based on real-time activity, we triggered personalized notifications and offers—driving better engagement and claim completion rates.

Tech Enablement

  • Claims Orchestration Layer: Incorporates legacy systems, third-party tools, and front-end apps for a unified experience.
  • AI & ML Models: For document validation, fraud detection, and claim routing, sentiment analysis is used. Businesses utilizing emotional AI report a 25% increase in customer satisfaction and a 30% decrease in complaints, resulting in more personalized and empathetic interactions.
  • Self-Service Portals: Customers can check their status, update documents, and track payouts—all without making a phone call.

Business Impact

What do insurers gain from investing in CX?

A faster claim is good. But a fair, clear, and human one wins loyalty.

And companies that consistently track and act on CX metrics are better positioned to retain customers and build long-term loyalty.

At Mantra Labs, we help insurers build end-to-end, tech-enabled claims journeys that delight customers and drive operational efficiency.
From intelligent document processing to AI-led nudges, we design for empathy at scale.

Want a faster and more transparent claims experience?

Let’s design it together.
Talk to our insurance transformation team today.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot