Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(6)

Manufacturing(4)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(33)

Technology Modernization(9)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(40)

Insurtech(67)

Product Innovation(59)

Solutions(22)

E-health(12)

HealthTech(25)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(154)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(8)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

Is AI Ready to Replace Your Doctor?

Have you ever wondered what if doctors could harness the power of many experts, all at once? Imagine every heartbeat, every lab result, and every medication being processed in seconds—faster than any human could ever dream of. No, this isn’t science fiction; it’s the new reality of Artificial Intelligence (AI) and Large Language Models (LLMs) in healthcare. The rise of AI in medicine and medical artificial intelligence is transforming the landscape of patient care and research.

Think of AI as the invisible co-pilot in a doctor’s journey—an entity that never sleeps, forgets nothing, and spots patterns that would take years for a human mind to recognize. It’s like giving healthcare professionals superpowers, enabling them to stay ahead of the curve in ways we never thought possible. But the real magic? Smart alert mechanisms jump into action when things are about to go wrong, providing warnings that save lives and make sure the right decisions happen in real-time. This is where AI for medical diagnosis truly shines, enhancing the capabilities of healthcare professionals.

AI and LLMs are changing the way healthcare works—and we’re at the forefront. Here’s how.

AI Pathology: Microscope with Superpowers

What if your microscope could not only analyze slides but also interpret them? That’s exactly what we did for Pathomiq. Our AI-powered pathology tool doesn’t just scan whole slides—it identifies disease progression and predicts patient responses with unmatched precision. By integrating LLMs, we created a system that not only analyzes images but also generates comprehensive, easy-to-understand diagnostic reports.

For Pathomiq, we trained AI models to detect malignancy patterns with 99% accuracy, and the LLMs translated the results into meaningful insights for doctors, which benefitted them with Faster diagnostics, better accuracy, and simpler communication between specialists.

Medical Image Analysis: X-Rays, But Make It Smart

X-rays, MRIs, and other medical imaging can be a treasure trove of data, but they often need an intelligent eye to make sense of it all. Abbvie came to us with this challenge. Our AI models analyze medical images to pinpoint abnormalities, demonstrating the power of AI medical diagnosis.

AI takes care of the image recognition, while LLMs convert findings into plain language summaries. For Abbvie, this resulted in faster image processing and more accurate interpretations. Clearer insights, faster decisions, and a smart system that even non-experts can understand.

AI Health Advisors

Imagine a health advisor that predicts your next treatment before you even need it. Our AI health advisor uses predictive analytics to identify patients likely to undergo surgery, showcasing how AI forecasts patient outcomes. This is similar to the Nura AI health screening concept, where early predictions combined with actionable, easy-to-read insights mean better health outcomes and proactive care.

Intelligent Document Parsing

Medical documents are notorious for their jargon-heavy content. But what if AI and LLMs could automatically extract the relevant information? That’s exactly what we did with our intelligent document parsing tool. Whether research papers or patient reports, our system extracts key data and presents it in a clear, concise format.

AI handles document parsing for faster decision-making. As there wouldn’t be any more sifting through endless documents—It streamlines the process and saves time.

Drug Discovery: Abbvie’s Fast-Track to Innovation

When Abbvie sought to enhance its drug discovery process, we stepped in with an AI-powered platform that redefines speed and accuracy. We developed a research tool that lists genes with their weighted interconnectivity from research papers, providing a visualization framework to display genes and proteins along with their interconnections. Our AI tools handle complex text parsing across various document formats and perform frequency determination and spectral clustering to identify gene pairs, their locations, and contextual details.

Our AI extracts and visualizes gene data, parses text, and determines the frequency and clustering of gene interactions. This approach accelerates drug discovery, cuts costs, and offers a clearer path from genetic research to real-world drug development.

Clinical Trials: Pathomiq’s AI-Powered Cancer Detection

Clinical trials are all about accuracy and speed, especially in cancer detection. For Pathomiq, we built AI models that analyze digital slides to identify early-stage malignancies. Our AI stepped in to explain the findings and suggest the next steps, streamlining the process for researchers and doctors.

AI detects cancer patterns in digital pathology slides and provides context-rich explanations that make trial results easier to understand. Early cancer detection paired with simplified trial documentation means faster, more accurate results.

Conclusion: AI & LLM—The Future of Healthcare, Today

At Mantra Labs, we’re not just integrating AI and LLMs into healthcare; we’re pioneering a revolution. It is said that AI has the potential to reduce diagnostic errors by up to 30% and streamline drug discovery processes by cutting research times in half. It has revolutionized healthcare by delivering faster diagnostics, improving the accuracy of medical imaging, and optimizing processes like pathology and clinical trials. Yet, even with these advancements, the human touch remains essential. Healthcare professionals bring the empathy, intuition, and ethical judgment that AI, for all its precision, cannot replace. While AI enhances decision-making and efficiency, it’s the collaboration between human insight and machine intelligence that ensures the best outcomes. The future of healthcare is not just about smarter technology, but about how human expertise and AI together can provide faster, more precise, and compassionate care.

Further Reading:

Doctor Who? AI takes center stage in American Healthcare

Cancel

Knowledge thats worth delivered in your inbox

The Rise of Domain-Specific AI Agents: How Enterprises Should Prepare

Generic AI is no longer enough. Domain-specific AI is the new enterprise advantage.

From hospitals to factories to insurance carriers, organizations are learning the hard way: horizontal AI platforms might be impressive, but they’re often blind to the realities of your industry.

Here’s the new playbook: intelligence that’s narrow, not general. Context-rich, not context-blind.
Welcome to the age of domain-specific AI agents— from underwriting co-pilots in insurance to care journey managers in hospitals.

Why Generalist LLMs Miss the Mark in Enterprise Use

Large language models (LLMs) like GPT or Claude are trained on the internet. That means they’re fluent in Wikipedia, Reddit, and research papers; basically, they are a jack-of-all-trades. But in high-stakes industries, that’s not good enough because they don’t speak insurance policy logic, ICD-10 coding, or assembly line telemetry.

This can lead to:

  • Hallucinations in compliance-heavy contexts
  • Poor integration with existing workflows
  • Generic insights instead of actionable outcomes

Generalist LLMs may misunderstand specific needs and lead to inefficiencies or even compliance risks. A generic co-pilot might just summarize emails or generate content. Whereas, a domain-trained AI agent can triage claims, recommend treatments, or optimize machine uptime. That’s a different league altogether.

What Makes an AI Agent “Domain-Specific”?

A domain-specific AI agent doesn’t just speak your language, it thinks in your logic—whether it’s insurance, healthcare, or manufacturing. 

Here’s how:

  • Context-awareness: It understands what “premium waiver rider”, “policy terms,” or “legal regulations” mean in your world—not just the internet’s.
  • Structured vocabularies: It’s trained on your industry’s specific terms—using taxonomies, ontologies, and glossaries that a generic model wouldn’t know.
  • Domain data models: Instead of just web data, it learns from your labeled, often proprietary datasets. It can reason over industry-specific schemas, codes (like ICD in healthcare), or even sensor data in manufacturing.
  • Reinforcement feedback: It improves over time using real feedback—fine-tuned with user corrections, and audit logs.

Think of it as moving from a generalist intern to a veteran team member—one who’s trained just for your business. 

Industry Examples: Domain Intelligence in Action

Insurance

AI agents are now co-pilots in underwriting, claims triage, and customer servicing. They:

  • Analyze complex policy documents
  • Apply rider logic across state-specific compliance rules
  • Highlight any inconsistencies or missing declarations

Healthcare

Clinical agents can:

  • Interpret clinical notes, ICD/CPT codes, and patient-specific test results.
  • Generate draft discharge summaries
  • Assist in care journey mapping or prior authorization

Manufacturing

Domain-trained models:

  • Translate sensor data into predictive maintenance alerts
  • Spot defects in supply chain inputs
  • Optimize plant floor workflows using real-time operational data

How to Build Domain Intelligence (And Not Just Buy It)

Domain-specific agents aren’t just “plug and play.” Here’s what it takes to build them right:

  1. Domain-focused training datasets: Clean, labeled, proprietary documents, case logs.
  1. Taxonomies & ontologies: Codify your internal knowledge systems and define relationships between domain concepts (e.g., policy → coverage → rider).
  2. Reinforcement loops: Capture feedback from users (engineers, doctors, underwriters) and reinforce learning to refine output.
  3. Control & Clarity: Ensure outputs are auditable and safe for decision-making

Choosing the Right Architecture: Wrapper or Ground-Up?

Not every use case needs to reinvent the wheel. Here’s how to evaluate your stack:

  • LLM Wrappers (e.g., LangChain, semantic RAG): Fast to prototype, good for lightweight tasks
  • Fine-tuned LLMs: Needed when the generic model misses nuance or accuracy
  • Custom-built frameworks: When performance, safety, and integration are mission-critical
Use CaseReasoning
Customer-facing chatbotOften low-stakes, fast-to-deploy use cases. Pre-trained LLMs with a wrapper (e.g., RAG, LangChain) usually suffice. No need for deep fine-tuning or custom infra.
Claims co-pilot (Insurance)Requires understanding domain-specific logic and terminology, so fine-tuning improves reliability. Wrappers can help with speed.
Treatment recommendation (Healthcare)High risk, domain-heavy use case. Needs fine-tuned clinical models and explainable custom frameworks (e.g., for FDA compliance).
Predictive maintenance (Manufacturing)Relies on structured telemetry data. Requires specialized data pipelines, model monitoring, and custom ML frameworks. Not text-heavy, so general LLMs don’t help much.

Strategic Roadmap: From Pilot to Platform

Enterprises typically start with a pilot project—usually an internal tool. But scaling requires more than a PoC. 

Here’s a simplified maturity model that most enterprises follow:

  1. Start Small (Pilot Agent): Use AI for a standalone, low-stakes use case—like summarizing documents or answering FAQs.
  1. Make It Useful (Departmental Agent): Integrate the agent into real team workflows. Example: triaging insurance claims or reviewing clinical notes.
  2. Scale It Up (Enterprise Platform): Connect AI to your key systems—like CRMs, EHRs, or ERPs—so it can automate across more processes. 
  1. Think Big (Federated Intelligence): Link agents across departments to share insights, reduce duplication, and make smarter decisions faster.

What to measure: Track how many tasks are completed with AI assistance versus manually. This shows real-world impact beyond just accuracy.

Closing Thoughts: Domain is the Differentiator

The next phase of AI isn’t about building smarter agents. It’s about building agents that know your world.

Whether you’re designing for underwriting or diagnostics, compliance or production—your agents need to understand your data, your language, and your context.

Ready to Build Your Domain-Native AI Agent? 

Talk to our platform engineering team about building custom-trained, domain-specific AI agents.

Further Reading: AI Code Assistants: Revolution Unveiled

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot