Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(6)

Manufacturing(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(33)

Technology Modernization(9)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(41)

Insurtech(67)

Product Innovation(59)

Solutions(22)

E-health(12)

HealthTech(25)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(154)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(8)

Computer Vision(8)

Data Science(24)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

How Machine Vision can Revolutionize Motor Insurance

3 minutes, 49 seconds read

The motor insurance market in India is approximately Rs 70,000 crore in terms of Gross Written Premiums. With newer and stricter regulations more and more people are buying motor insurance. However, while motor insurance, in general, has grown by 16% over the last year, the new digital insurers in the marketplace have seen their premiums increase by 4X-6X. 

This underlines a shift in the way customers choose to buy motor insurance – from the convenience of their smartphone or computer, instantly. There is no reason to think that they would not want to settle an insurance claim in the same convenient manner. Fortunately, machine vision technology solves claims settlement challenges to a great extent.

Current Claims Process

Let us have a quick look at the current claim settlement process for motor insurance. Once the accident occurs, the insured has to follow the following steps:

  1. The insured informs the insurance company about the accident. Subsequently, the insured files a physical claim along with the required documents such as RC, DL, insurance policy, bills, receipts, etc.
  2. A surveyor gets assigned by the insurance company to examine the damaged vehicle. 
  3. The surveyor ascertains the reason and the extent of the loss. After this, the insurer sends an approval/rejection of the claim/amount.

The above process is not only time consuming and stressful for the insured but also expensive for the insurer due to physical inspection and other manual checks and balances. The higher cost of processing the claim makes business less profitable to the insurer. The inconvenience and long wait make the product less desirable to the customer.

As more and more people buy motor insurance online, the customer expectation from the claim settlement process is changing as well. Customers now expect a seamless digital claim settlement process preferably in a matter of hours if not minutes, instead of the present industry standard of several days.

A Machine Vision Solution to Instant Claims Processing: FlowMagic

We at FlowMagic set out to solve this problem both for the insured and insurer using the power of artificial intelligence. We have used machine vision to eliminate the need for the surveyor in all but the most complex cases. 

Using machine vision, we can process a car image and identify not only the damaged parts but also the severity of damage to those parts and whether it requires repair or a replacement. We have further analyzed repair cost data and images from tens of thousands of accident cases to build an Artificial Intelligence Costing Model that can estimate the cost of repairing any part just by looking at its photograph. All this means that the insurer doesn’t need the surveyor and other manual checks in most cases and the customer can submit a claim from the convenience of his smartphone and get an approval decision within minutes.

New Claims Settlement Process with FlowMagic

  1. After the accident, the customer clicks photographs of damaged parts of the car and uploads them on the app along with a photo of DL/RC.
  2. The AI model verifies the DL/RC information and estimates the extent of damage to the car and whether the damaged parts need to be replaced or repaired. The model further calculates the cost of repair and/or replacement and informs the customer/insurance company.
  3. Based on the outcome of the DL/RC verification and the repair estimate the claim is either auto-approved in minutes or forwarded to a claims adjuster for review.

All the stakeholders in the insurance value chain can use our solution and benefit from it.

Insurance Company: By integrating this solution with mobile applications, Insurance companies can get quick claims intimations and a reasonable estimate of the repair cost. The damage severity analysis also helps the insurance company negotiate with the garage on whether a part needs repair or replacement.

Service Center or Garage: Multi-brand garages or service centers can quickly assess the level of damage to any car brought to them through machine vision-based FlowMagic. Accordingly, they can send a quick quotation to the insurance companies. The insurance companies can trust this quotation as it is generated by a robust AI model.

End Customer: An end customer can also use our free mobile application to get a repair estimate. This can be a starting point for an informed negotiation with a garage.

To learn more about how FlowMagic can transform the way you settle your motor insurance claims or discuss your broader AI goals, please get in touch with us at hello@mantralabsglobal.com 

Also read – How AI can settle insurance claims in less than 5 minutes!

About author: Himanshu Saraf is a Capital Markets Director at Mantra Labs. He also leads Artificial Intelligence (AI) and Machine Learning initiatives in the company.

Cancel

Knowledge thats worth delivered in your inbox

Smart Manufacturing Dashboards: A Real-Time Guide for Data-Driven Ops

Smart Manufacturing starts with real-time visibility.

Manufacturing companies today generate data by the second through sensors, machines, ERP systems, and MES platforms. But without real-time insights, even the most advanced production lines are essentially flying blind.

Manufacturers are implementing real-time dashboards that serve as control towers for their daily operations, enabling them to shift from reactive to proactive decision-making. These tools are essential to the evolution of Smart Manufacturing, where connected systems, automation, and intelligent analytics come together to drive measurable impact.

Data is available, but what’s missing is timely action.

For many plant leaders and COOs, one challenge persists: operational data is dispersed throughout systems, delayed, or hidden in spreadsheets. And this delay turns into a liability.

Real-time dashboards help uncover critical answers:

  • What caused downtime during last night’s shift?
  • Was there a delay in maintenance response?
  • Did a specific inventory threshold trigger a quality issue?

By converting raw inputs into real-time manufacturing analytics, dashboards make operational intelligence accessible to operators, supervisors, and leadership alike, enabling teams to anticipate problems rather than react to them.

1. Why Static Reports Fall Short

  • Reports often arrive late—after downtime, delays, or defects have occurred.
  • Disconnected data across ERP, MES, and sensors limits cross-functional insights.
  • Static formats lack embedded logic for proactive decision support.

2. What Real-Time Dashboards Enable

Line performance and downtime trends
Track OEE in real time and identify underperforming lines.

Predictive maintenance alerts
Utilize historical and sensor data to identify potential part failures in advance.

Inventory heat maps & reorder thresholds
Anticipate stockouts or overstocks based on dynamic reorder points.

Quality metrics linked to operator actions
Isolate shifts or procedures correlated with spikes in defects or rework.

These insights allow production teams to drive day-to-day operations in line with Smart Manufacturing principles.

3. Dashboards That Drive Action

Role-based dashboards
Dashboards can be configured for machine operators, shift supervisors, and plant managers, each with a tailored view of KPIs.

Embedded alerts and nudges
Real-time prompts, like “Line 4 below efficiency threshold for 15+ minutes,” reduce response times and minimize disruptions.

Cross-functional drill-downs
Teams can identify root causes more quickly because users can move from plant-wide overviews to detailed machine-level data in seconds.

4. What Powers These Dashboards

Data lakehouse integration
Unified access to ERP, MES, IoT sensor, and QA systems—ensuring reliable and timely manufacturing analytics.

ETL pipelines
Real-time data ingestion from high-frequency sources with minimal latency.

Visualization tools
Custom builds using Power BI, or customized solutions designed for frontline usability and operational impact.

Smart Manufacturing in Action: Reducing Market Response Time from 48 Hours to 30 Minutes

Mantra Labs partnered with a North American die-casting manufacturer to unify its operational data into a real-time dashboard. Fragmented data, manual reporting, delayed pricing decisions, and inconsistent data quality hindered operational efficiency and strategic decision-making.

Tech Enablement:

  • Centralized Data Hub with real-time access to critical business insights.
  • Automated report generation with data ingestion and processing.
  • Accurate price modeling with real-time visibility into metal price trends, cost impacts, and customer-specific pricing scenarios. 
  • Proactive market analysis with intuitive Power BI dashboards and reports.

Business Outcomes:

  • Faster response to machine alerts
  • Quality incidents traced to specific operator workflows
  • 4X faster access to insights led to improved inventory optimization.

As this case shows, real-time dashboards are not just operational tools—they’re strategic enablers. 

(Learn More: Powering the Future of Metal Manufacturing with Data Engineering)

Key Takeaways: Smart Manufacturing Dashboards at a Glance

AspectWhat You Should Know
1. Why Static Reports Fall ShortDelayed insights after issues occur
Disconnected systems (ERP, MES, sensors)
No real-time alerts or embedded decision logic
2. What Real-Time Dashboards EnableTrack OEE and downtime in real-time
Predictive maintenance using sensor data
Dynamic inventory heat maps
Quality linked to operators
3. Dashboards That Drive ActionRole-based views (operator to CEO)
Embedded alerts like “Line 4 down for 15+ mins”
Drilldowns from plant-level to machine-level
4. What Powers These DashboardsUnified Data Lakehouse (ERP + IoT + MES)
Real-time ETL pipelines
Power BI or custom dashboards built for frontline usability

Conclusion

Smart Manufacturing dashboards aren’t just analytics tools—they’re productivity engines. Dashboards that deliver real-time insight empower frontline teams to make faster, better decisions—whether it’s adjusting production schedules, triggering preventive maintenance, or responding to inventory fluctuations.

Explore how Mantra Labs can help you unlock operations intelligence that’s actually usable.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot