Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(6)

Manufacturing(4)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(33)

Technology Modernization(9)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(41)

Insurtech(67)

Product Innovation(59)

Solutions(22)

E-health(12)

HealthTech(25)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(154)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(8)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

NPS in Insurance Claims: What Insurance Leaders Are Doing Differently

Claims are the moment of truth. Are you turning them into moments of loyalty?

In insurance, your app interface might win you downloads. Your pricing might drive conversions.
But it’s the claims experience that decides whether a customer stays—or leaves for good.

According to a survey by NPS Prism, promoters are 2.3 times more likely to renew their insurance policies than passives or detractors—highlighting the strong link between customer advocacy and retention.

NPS in insurance industry is a strong predictor of customer retention. Many insurers are now prioritizing NPS to improve their claims experience.

So, what are today’s high-NPS insurers doing differently? Spoiler: it’s not just about faster payouts.

We’ve worked with claims teams that had best-in-class automation—but still had low NPS. Why? Because the process felt like a black box.
Customers didn’t know where their claim stood. They weren’t sure what to do next. And when money was at stake, silence created anxiety and dissatisfaction.

Great customer experience (CX) in claims isn’t just about speed—it’s about giving customers a sense of control through clear communication and clarity.

The Traditional Claims Journey

  • Forms → Uploads → Phone calls → Waiting
  • No real-time updates
  • No guidance after claim initiation
  • Paper documents and email ping-pong

The result? Frustrated customers and overwhelmed call centers.

The CX Gap: It’s Not Just Speed—It’s Transparency

Customers don’t always expect instant decisions. What they want:

  • To know what’s happening with their claim
  • To understand what’s expected of them
  • To feel heard and supported during the process

How NPS Leaders Are Winning Loyalty with CX-Driven Claims and High NPS

Image Source: NPS Prism

1. Real-Time Status Updates

Transparency to the customer via mobile app, email, or WhatsApp—keeping them in the loop with clear milestones. 

2. Proactive Nudges

Auto-reminders, such as “upload your medical bill” or “submit police report,” help close matters much faster and avoid back-and-forth.

3. AI-Powered Document Uploads

Single-click scans with OCR + AI pull data instantly—no typing, no errors.

4. In-the-Moment Feedback Loops

Simple post-resolution surveys collect sentiment and alert on issues in real time.

For e.g., Lemonade uses emotional AI to detect customer sentiment during the claims process, enabling empathetic responses that boost satisfaction and trust.

Smart Nudges from Real-Time Journey Tracking

For a leading insurance firm, we mapped the entire in-app user journey—from buying or renewing a policy to initiating a claim or checking discounts. This helped identify exactly where users dropped off. Based on real-time activity, we triggered personalized notifications and offers—driving better engagement and claim completion rates.

Tech Enablement

  • Claims Orchestration Layer: Incorporates legacy systems, third-party tools, and front-end apps for a unified experience.
  • AI & ML Models: For document validation, fraud detection, and claim routing, sentiment analysis is used. Businesses utilizing emotional AI report a 25% increase in customer satisfaction and a 30% decrease in complaints, resulting in more personalized and empathetic interactions.
  • Self-Service Portals: Customers can check their status, update documents, and track payouts—all without making a phone call.

Business Impact

What do insurers gain from investing in CX?

A faster claim is good. But a fair, clear, and human one wins loyalty.

And companies that consistently track and act on CX metrics are better positioned to retain customers and build long-term loyalty.

At Mantra Labs, we help insurers build end-to-end, tech-enabled claims journeys that delight customers and drive operational efficiency.
From intelligent document processing to AI-led nudges, we design for empathy at scale.

Want a faster and more transparent claims experience?

Let’s design it together.
Talk to our insurance transformation team today.

Cancel

Knowledge thats worth delivered in your inbox

The Rise of Domain-Specific AI Agents: How Enterprises Should Prepare

Generic AI is no longer enough. Domain-specific AI is the new enterprise advantage.

From hospitals to factories to insurance carriers, organizations are learning the hard way: horizontal AI platforms might be impressive, but they’re often blind to the realities of your industry.

Here’s the new playbook: intelligence that’s narrow, not general. Context-rich, not context-blind.
Welcome to the age of domain-specific AI agents— from underwriting co-pilots in insurance to care journey managers in hospitals.

Why Generalist LLMs Miss the Mark in Enterprise Use

Large language models (LLMs) like GPT or Claude are trained on the internet. That means they’re fluent in Wikipedia, Reddit, and research papers; basically, they are a jack-of-all-trades. But in high-stakes industries, that’s not good enough because they don’t speak insurance policy logic, ICD-10 coding, or assembly line telemetry.

This can lead to:

  • Hallucinations in compliance-heavy contexts
  • Poor integration with existing workflows
  • Generic insights instead of actionable outcomes

Generalist LLMs may misunderstand specific needs and lead to inefficiencies or even compliance risks. A generic co-pilot might just summarize emails or generate content. Whereas, a domain-trained AI agent can triage claims, recommend treatments, or optimize machine uptime. That’s a different league altogether.

What Makes an AI Agent “Domain-Specific”?

A domain-specific AI agent doesn’t just speak your language, it thinks in your logic—whether it’s insurance, healthcare, or manufacturing. 

Here’s how:

  • Context-awareness: It understands what “premium waiver rider”, “policy terms,” or “legal regulations” mean in your world—not just the internet’s.
  • Structured vocabularies: It’s trained on your industry’s specific terms—using taxonomies, ontologies, and glossaries that a generic model wouldn’t know.
  • Domain data models: Instead of just web data, it learns from your labeled, often proprietary datasets. It can reason over industry-specific schemas, codes (like ICD in healthcare), or even sensor data in manufacturing.
  • Reinforcement feedback: It improves over time using real feedback—fine-tuned with user corrections, and audit logs.

Think of it as moving from a generalist intern to a veteran team member—one who’s trained just for your business. 

Industry Examples: Domain Intelligence in Action

Insurance

AI agents are now co-pilots in underwriting, claims triage, and customer servicing. They:

  • Analyze complex policy documents
  • Apply rider logic across state-specific compliance rules
  • Highlight any inconsistencies or missing declarations

Healthcare

Clinical agents can:

  • Interpret clinical notes, ICD/CPT codes, and patient-specific test results.
  • Generate draft discharge summaries
  • Assist in care journey mapping or prior authorization

Manufacturing

Domain-trained models:

  • Translate sensor data into predictive maintenance alerts
  • Spot defects in supply chain inputs
  • Optimize plant floor workflows using real-time operational data

How to Build Domain Intelligence (And Not Just Buy It)

Domain-specific agents aren’t just “plug and play.” Here’s what it takes to build them right:

  1. Domain-focused training datasets: Clean, labeled, proprietary documents, case logs.
  1. Taxonomies & ontologies: Codify your internal knowledge systems and define relationships between domain concepts (e.g., policy → coverage → rider).
  2. Reinforcement loops: Capture feedback from users (engineers, doctors, underwriters) and reinforce learning to refine output.
  3. Control & Clarity: Ensure outputs are auditable and safe for decision-making

Choosing the Right Architecture: Wrapper or Ground-Up?

Not every use case needs to reinvent the wheel. Here’s how to evaluate your stack:

  • LLM Wrappers (e.g., LangChain, semantic RAG): Fast to prototype, good for lightweight tasks
  • Fine-tuned LLMs: Needed when the generic model misses nuance or accuracy
  • Custom-built frameworks: When performance, safety, and integration are mission-critical
Use CaseReasoning
Customer-facing chatbotOften low-stakes, fast-to-deploy use cases. Pre-trained LLMs with a wrapper (e.g., RAG, LangChain) usually suffice. No need for deep fine-tuning or custom infra.
Claims co-pilot (Insurance)Requires understanding domain-specific logic and terminology, so fine-tuning improves reliability. Wrappers can help with speed.
Treatment recommendation (Healthcare)High risk, domain-heavy use case. Needs fine-tuned clinical models and explainable custom frameworks (e.g., for FDA compliance).
Predictive maintenance (Manufacturing)Relies on structured telemetry data. Requires specialized data pipelines, model monitoring, and custom ML frameworks. Not text-heavy, so general LLMs don’t help much.

Strategic Roadmap: From Pilot to Platform

Enterprises typically start with a pilot project—usually an internal tool. But scaling requires more than a PoC. 

Here’s a simplified maturity model that most enterprises follow:

  1. Start Small (Pilot Agent): Use AI for a standalone, low-stakes use case—like summarizing documents or answering FAQs.
  1. Make It Useful (Departmental Agent): Integrate the agent into real team workflows. Example: triaging insurance claims or reviewing clinical notes.
  2. Scale It Up (Enterprise Platform): Connect AI to your key systems—like CRMs, EHRs, or ERPs—so it can automate across more processes. 
  1. Think Big (Federated Intelligence): Link agents across departments to share insights, reduce duplication, and make smarter decisions faster.

What to measure: Track how many tasks are completed with AI assistance versus manually. This shows real-world impact beyond just accuracy.

Closing Thoughts: Domain is the Differentiator

The next phase of AI isn’t about building smarter agents. It’s about building agents that know your world.

Whether you’re designing for underwriting or diagnostics, compliance or production—your agents need to understand your data, your language, and your context.

Ready to Build Your Domain-Native AI Agent? 

Talk to our platform engineering team about building custom-trained, domain-specific AI agents.

Further Reading: AI Code Assistants: Revolution Unveiled

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot