Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(6)

Manufacturing(3)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(33)

Technology Modernization(9)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(59)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(153)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(8)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

Africa: The Hidden Workforce Behind AI

The machines are learning. Slowly, sure, but they are learning and we (humans) are the ones teaching them. We tell the machines how they should learn through the algorithms we write, and then feed them an enormous amount of data, so that it trains endlessly. Data labeling (the process of augmenting unlabelled data with meaningful and informative tags), is a necessary part of machine learning and sadly there’s a simple reason behind the use of a lower-wage workforce to train ML (Machine Learning) models — you only pay them half as much. The market for AI data preparation is projected to leap from $500M in 2018 to $1.2B by 2023.

Data is the only real fodder for any type of AI system. The more it trains on large amounts of ‘good data’, the faster it learns. Behind every piece of machine learning code intended to solve real issues, is a network of digital construction workers bearing the burden of building the foundation for AI — preparing data. For example, AI systems are trained to recognize objects. Data Labelers upload, categorize and cluster millions of images — just about everything from people, animals, buildings, plants, cars, signs, shapes, and things. In doing so, you now have an AI system that can begin to recognize these objects in the real world.

Again, for example, an algorithm meant to classify images of animals uses a large volume of images of different types of animals (dogs, leopards, giraffes, zebras, etc.) to train the model. These images will be labeled and classified for the model to work. A data labeler typically performs this essential function. It annotates the images with the right answers and transforms the dataset into a format suitable for machine/ deep learning.


Data Enrichment for Training ML Models

The real underlying aspect to machine intelligence is ‘the human’ in the AI loop — and it isn’t going away anytime soon either. Functions like data labeling are vital for AI quality control. Big Tech firms readily outsource these tasks to parts of the world where the minimum wage is significantly lower in order to meet extremely ambitious goals within budget. Data preparation and engineering tasks represent over 80% of the time consumed in most AI and machine learning projects. 

For instance, small data labeling companies in Kenya (and others spread across Africa) are working with large American & European firms to help them classify and organize millions of datasets. The task involves highlighting and labeling images of vehicles, traffic lights, landmarks, road signs and pedestrians captured by cameras fixed on autonomous vehicles so that these machines can become aware of the objects around them.


Bounding Boxes (tagging images for machine or deep learning models)


Image Segmentation (recognize objects of different shapes, sizes, and positions)
(source: clickworker)

Automation (the precursor to true AI) has put low-skilled jobs at supposed “extinction-level” risk for several decades now, as self-driving cars, rules-based process bots, and speech recognition will continue to exacerbate this trend. In reality, the advances of digital industrialism are not new, neither is the elimination or replacement of low-skill jobs with newer low-skill jobs. 

Sebenz.ai, a South African AI firm, is trying to create job opportunities for people throughout Africa leveraging the growing demand locally for data labelers. They have produced a Machine Learning ‘labeling game’ that allows people to earn money on their phones by labeling training data for ML models. Using this innovative approach, Sebenz is able to create labeled-data with real-time responses almost in parallel to train these models accurately.

According to the firm, it takes 10,000 hours of audio to train a speech-to-text model. With 1 data labeler, it would take 65 months, but with 10,000 people it would be ready in a few hours. In return, the data labelers are compensated around $16 per day, (minimum wage in the African continent is only a paltry $3 per day), albeit affording them the opportunity to make a better living. Most of the people drawn to data labeling jobs are often unskilled workers and live below the poverty line.

According to a 2018 KPMG research report, 5% or more of the global workforce will be replaced by automation within the next 2 years

When Silicon Valley first began importing ‘cleaned’ data in bulk at nearly a fraction of the price, then it would otherwise cost them in their own markets — it wasn’t initially received as the modest competitive advantage as it is today. However, looking ahead at the ‘future of work’ and the role of Big Tech in shaping the informal economy — the low skilled jobs fueling automation and AI will soon become automated themselves, creating newer jobs and roles for people en masse to move into, yet again.

webinar: AI for data-driven Insurers

Join our Webinar — AI for Data-driven Insurers: Challenges, Opportunities & the Way Forward hosted by our CEO, Parag Sharma as he addresses Insurance business leaders and decision-makers on April 14, 2020.

AI is shaping the future of enterprises and consumer-services in affordable and scalable ways. To learn more about how we can transform your AI journey, reach out to us at hello@mantralabsglobal.com

Cancel

Knowledge thats worth delivered in your inbox

Sales Applications Are Disrupting More Than Just Sales

Sales success today isn’t about luck or lofty goals—it’s about having the right tools in your team’s hands, wherever they go. Following our earlier in-depth exploration of sales technology, we will now examine how cutting-edge sales apps are becoming the backbone of modern industries, transforming complex workflows into seamless, growth-driving machines.

From retail to healthcare, logistics to real estate, businesses are deploying sales applications to enhance operational transparency, cut redundant tasks, and build intelligent sales ecosystems. These tools are not only digitizing workflows—they’re driving growth, improving engagement, and redefining how field teams operate.

Lead Ecosystems: Unified visibility across channels

One app. Five workflows. Zero friction.

A leading insurance brand relaunched their app—a sleek, powerful sales companion that’s turning everyday agents into top performers.

No more paperwork. More time to sell.

Here’s what changed:

  • Every visit is tagged, tracked, and followed through. Renewals? Never missed. Leads? Fully visible.
  • Attendance and reimbursements went on autopilot. No more manual logs. No more chasing approvals.
  • New business and renewals are tracked in real time, with accurate forecasting that sales leaders can finally trust.
  • Dashboards are clean, configurable, and useful—insights that move the business, not just report on it.
  • Seamless Integrations. API connectivity with Darwin Box, IMD Master Data, and SSO authentication for a unified experience.

The result? A field team that moves faster, sells better, and works smarter.

Retail: Taking Orders from the Frontline—Smartly

Field sales agents in retail, especially FMCG, used to rely on gut instinct. Now, with intelligent sales applications:

  • AI recommends what to upsell or cross-sell based on previous order patterns
  • Real-time stock availability and credit status are visible in the app
  • Geo-fencing ensures optimized route planning
  • Built-in payment collection modules streamline transaction closure

Healthcare: Structuring Sales with Compliance and Precision

Healthcare leaders don’t need more reports—they need better visibility from the field.  Whether it’s engaging hospital networks, onboarding clinics, or enabling diagnostics at the last mile, everything needs precision, compliance, and clarity. 

Mantra Labs helped a leading healthcare enterprise design a sales app that integrates knowledge, compliance, performance, and recognition, turning frontline agents into informed, aligned, and empowered brand advocates. 

Here’s what it delivers:

  • Role-based onboarding that keeps every level of the field force aligned and accountable
  • Escalation mechanisms are built into the system, driving transparency across commissions and performance reviews
  • A centralized Knowledge Hub featuring healthcare news, service updates, and training modules to keep reps well-informed
  • Recognition modules that celebrate milestones, boost morale, and reinforce a culture of excellence

Now, the field agents aren’t just connected—they’re aligned, upskilled, and accountable.

Real Estate: From Cold Calls to Smart Conversions

For real estate agents, timing and personalization are everything. Sales applications are evolving to include:

  • Virtual site tour integration for remote buyers
  • Mortgage and EMI calculators to increase buyer confidence
  • WhatsApp-based lead capture and nurture sequences
  • CRM integration for inventory updates and automatic scheduling

Logistics: From Chaos to Control in Field Coordination

Field agents in logistics are switching from clipboards to real-time command centers on mobile. Modern sales applications offer:

  • Live delivery status and route deviation alerts
  • Automated dispute reporting and issue resolution tracking
  • Fleet coordination through integrated GPS modules
  • Customer feedback capture and SLA dashboards

What’s new & what’s next in Sales Applications?

Here’s what’s pushing the next wave of innovation:

  • Voice-to-Text Logging: Agents dictate notes while on the move.
  • AI-Powered Nudges: Apps that suggest next-best actions based on behavior.
  • Omnichannel Communication: In-app chat, WhatsApp, email—unified.
  • Role-Based Dashboards: Different data views for admins, managers, and field reps.

What does this mean for Business Leaders?

Sales Applications are not just tactical tools. They’re platforms for transformation. With the right design, integrations, and analytics, they:

  • Replace guesswork with intelligence
  • Reduce the cost of delay and manual labor
  • Improve agent accountability and transparency
  • Speed up decision-making across hierarchies

The future of field sales lies in intuitive, AI-driven applications that adapt to every industry’s nuances. At Mantra Labs, we work closely with enterprises to custom-build sales applications that align with business objectives and ground-level realities.

Conclusion: 

If your agents still rely on Excel trackers and daily call reports, it’s time to reimagine your sales operations. Let us help you bring your field operations into the future—with tools that are fast, field-tested, and built for scale.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot