Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(6)

Manufacturing(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(33)

Technology Modernization(9)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(41)

Insurtech(67)

Product Innovation(59)

Solutions(22)

E-health(12)

HealthTech(25)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(154)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(8)

Computer Vision(8)

Data Science(24)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

Android Developers: 3 latest new features in Android

Android_thumb800

Many new updates happened for Android developers lately after Google I/O. Initially there was no restriction on some features but now they have updated them with some restrictions.

We have covered new features and the old features as well with new restrictions.

Here are the old features with new restrictions:

• Background Execution Limits

Whenever an app runs in the background, it consumes some of the device’s limited resources, like RAM. This can result in an impaired user experience, especially if the user is using a resource-intensive app, such as playing a game or watching a video.
To lower the chance of these problems, Android O places limitations on what apps can do while users aren’t directly interacting with them. Apps are restricted in two ways:

Background Service Limitations: When an app’s service is running in the background might consume device resources which may lead to bad user experience, to avoid these type of issues Android system applies a number of limitations on background services, this does not apply to foreground services, which are more noticeable to the user.
Broadcast Limitations: Apps targeted Android O can not use their manifest to register for implicit broadcasts. They can still register for these broadcasts at runtime, and they can use the manifest to register for explicit broadcasts targeted specifically at their app.

Note: The restrictions are applied by default applied to apps which are targeting Android O and in terms of other applications users can enable these restrictions from the Settings screen even if the app has not targeted Android O.

• Android Background Location Limits

Considering battery usage and user experience , background apps which are using Android locations APIs to fetch the user’s location will receive location updates less frequently when the app is being used in a device running Android O, developers who are using Fused Location Provider (FLP), Geofencing, GNSS Measurements, Location Manager, Wi-Fi Manager will get affected by this change.

• Notifications

  1. Notification Badges

    Notification Badges are the new way of notifying users regarding the new notifications arrived for a particular app, this will display badges on app icons in supported launchers which show notifications associated with one or more notification channels in an app, which the user has not yet dismissed or acted on.

  2. Notification Channels

    Using Notification channels developers can group their application’s notifications by category so that the user can apply few characteristics basing on the notification category. When you target Android O, you must implement one or more notification channels to display notifications to your users. If you don’t target Android O, your apps behave the same as they do on Android 7.0 when running on Android O devices.

Google says that the following characteristics can be applied to notification channels and that when the user assigns one of these, it will be applied channel- wide and they are as follows

  • Importance
  • Sound
  • Lights
  • Vibration
  • Show on lock screen
  • Override do not disturb

Here are some new features:

• New in UI and Styling

There are bunch of new features of UI and Styling are introduced in Android O and are as follows

1. Fonts

Android introduced fonts in XML through which we can use custom fonts as resources, You can add your custom font file in res/font/ folder to bundle fonts as resources and can access as a normal resource file and Android Support Library 26 introduce support for APIs to request fonts from a provider application instead of bundling files into your project which helps in reducing your application size
To use these font features on devices running Android API version 14 and higher, a developer needs to use the Support Library 26.

2. Auto Sizing Textviews

By using Support Library 26 Beta developers can now instruct to their app’s Textview to automatically increase or decrease the size to fit perfectly within the boundaries of the Textview.

3. Adaptive Icons

Adaptive icons can display app’s launcher icons in a variety of shapes across different devices for instance in Google Nexus the launcher icon might be in circular and in some Samsung device it might be squircle. Google says that with Android O, each device can provide a mask for the icon, which the OS can use to render all icons with the same shape. This will likely be embraced by OEMs(Original Equipment Manufacturer) who would like to have some unique looking home screens.

4. Autofill Framework

This framework will help the user by pre-filling the user information and user can save time as Filling out forms is a time-consuming and error-prone task. Users can easily get frustrated with apps that require these type of tasks. The Autofill Framework improves the user experience by providing the following benefits:

Less time spent in filling fields Autofill saves users from re-typing information.
Minimize user input errors Typing is prone to errors, especially on mobile devices. Removing the necessity of typing information also removes the errors that come with it.

• Picture in Picture Mode

In Android 7.0, Android TV users can now watch a video in a pinned window in a corner of the screen when navigating within or between apps whereas it was not available to other devices whereas from Android O Picture in Picture is available to all the devices, not just the Android TV.

• Kotlin For Android

Java is the mostly used programming language for the development of Android, When you run a Java application, the app is compiled into a set of instructions called Bytecode and runs in a virtual machine. Many alternative Languages has been introduced to also run on the JVM through which the resulting app looks the same for the JVM
JetBrains, known for IntelliJ IDEA (Android Studio is based on IntelliJ), has introduced the Kotlin language.Kotlin is a statically-typed programming language that runs on the JVM. It can also be compiled to JavaScript source code.

Why Kotlin For Android?

  • Interoperability with Java
  • Intuitive and easy to read
  • Good Android Studio Support
  • Safe to avoid entire classes of errors such as null pointer exceptions.
  • Less to write compared to Java
  • Safe to avoid entire classes of errors such as null pointer exceptions.
  • Versatile for building server-side applications, Android apps or frontend code running in the browser.

Stay tuned for more new updates on Android.

Check out these articles to catch the latest trends in mobile apps:

  1. 7 Important Points To Consider Before Developing A Mobile App
  2. The Clash of Clans: Kotlin Vs. Flutter
  3. Google for India September event 2019 key highlights
  4. Learn Ionic Framework From Scratch in Less Than 15 Minutes!
  5. AI in Mobile Development
  6. 10 Reasons to Learn Swift Programming Language
Cancel

Knowledge thats worth delivered in your inbox

Smart Manufacturing Dashboards: A Real-Time Guide for Data-Driven Ops

Smart Manufacturing starts with real-time visibility.

Manufacturing companies today generate data by the second through sensors, machines, ERP systems, and MES platforms. But without real-time insights, even the most advanced production lines are essentially flying blind.

Manufacturers are implementing real-time dashboards that serve as control towers for their daily operations, enabling them to shift from reactive to proactive decision-making. These tools are essential to the evolution of Smart Manufacturing, where connected systems, automation, and intelligent analytics come together to drive measurable impact.

Data is available, but what’s missing is timely action.

For many plant leaders and COOs, one challenge persists: operational data is dispersed throughout systems, delayed, or hidden in spreadsheets. And this delay turns into a liability.

Real-time dashboards help uncover critical answers:

  • What caused downtime during last night’s shift?
  • Was there a delay in maintenance response?
  • Did a specific inventory threshold trigger a quality issue?

By converting raw inputs into real-time manufacturing analytics, dashboards make operational intelligence accessible to operators, supervisors, and leadership alike, enabling teams to anticipate problems rather than react to them.

1. Why Static Reports Fall Short

  • Reports often arrive late—after downtime, delays, or defects have occurred.
  • Disconnected data across ERP, MES, and sensors limits cross-functional insights.
  • Static formats lack embedded logic for proactive decision support.

2. What Real-Time Dashboards Enable

Line performance and downtime trends
Track OEE in real time and identify underperforming lines.

Predictive maintenance alerts
Utilize historical and sensor data to identify potential part failures in advance.

Inventory heat maps & reorder thresholds
Anticipate stockouts or overstocks based on dynamic reorder points.

Quality metrics linked to operator actions
Isolate shifts or procedures correlated with spikes in defects or rework.

These insights allow production teams to drive day-to-day operations in line with Smart Manufacturing principles.

3. Dashboards That Drive Action

Role-based dashboards
Dashboards can be configured for machine operators, shift supervisors, and plant managers, each with a tailored view of KPIs.

Embedded alerts and nudges
Real-time prompts, like “Line 4 below efficiency threshold for 15+ minutes,” reduce response times and minimize disruptions.

Cross-functional drill-downs
Teams can identify root causes more quickly because users can move from plant-wide overviews to detailed machine-level data in seconds.

4. What Powers These Dashboards

Data lakehouse integration
Unified access to ERP, MES, IoT sensor, and QA systems—ensuring reliable and timely manufacturing analytics.

ETL pipelines
Real-time data ingestion from high-frequency sources with minimal latency.

Visualization tools
Custom builds using Power BI, or customized solutions designed for frontline usability and operational impact.

Smart Manufacturing in Action: Reducing Market Response Time from 48 Hours to 30 Minutes

Mantra Labs partnered with a North American die-casting manufacturer to unify its operational data into a real-time dashboard. Fragmented data, manual reporting, delayed pricing decisions, and inconsistent data quality hindered operational efficiency and strategic decision-making.

Tech Enablement:

  • Centralized Data Hub with real-time access to critical business insights.
  • Automated report generation with data ingestion and processing.
  • Accurate price modeling with real-time visibility into metal price trends, cost impacts, and customer-specific pricing scenarios. 
  • Proactive market analysis with intuitive Power BI dashboards and reports.

Business Outcomes:

  • Faster response to machine alerts
  • Quality incidents traced to specific operator workflows
  • 4X faster access to insights led to improved inventory optimization.

As this case shows, real-time dashboards are not just operational tools—they’re strategic enablers. 

(Learn More: Powering the Future of Metal Manufacturing with Data Engineering)

Key Takeaways: Smart Manufacturing Dashboards at a Glance

AspectWhat You Should Know
1. Why Static Reports Fall ShortDelayed insights after issues occur
Disconnected systems (ERP, MES, sensors)
No real-time alerts or embedded decision logic
2. What Real-Time Dashboards EnableTrack OEE and downtime in real-time
Predictive maintenance using sensor data
Dynamic inventory heat maps
Quality linked to operators
3. Dashboards That Drive ActionRole-based views (operator to CEO)
Embedded alerts like “Line 4 down for 15+ mins”
Drilldowns from plant-level to machine-level
4. What Powers These DashboardsUnified Data Lakehouse (ERP + IoT + MES)
Real-time ETL pipelines
Power BI or custom dashboards built for frontline usability

Conclusion

Smart Manufacturing dashboards aren’t just analytics tools—they’re productivity engines. Dashboards that deliver real-time insight empower frontline teams to make faster, better decisions—whether it’s adjusting production schedules, triggering preventive maintenance, or responding to inventory fluctuations.

Explore how Mantra Labs can help you unlock operations intelligence that’s actually usable.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot