Astronaut loading animation Circular loading bar

Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(5)

Customer Journey(12)

Design(35)

Solar Industry(6)

User Experience(55)

Edtech(10)

Events(34)

HR Tech(2)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(17)

Testing(9)

Android(47)

Backend(30)

Dev Ops(7)

Enterprise Solution(27)

Technology Modernization(2)

Frontend(28)

iOS(43)

Javascript(15)

AI in Insurance(35)

Insurtech(63)

Product Innovation(49)

Solutions(19)

E-health(10)

HealthTech(22)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(132)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(17)

FinTech(50)

Banking(7)

Intelligent Automation(26)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

Basics of load testing in Enterprise Applications using J-Meter

5 minutes read

We need to test websites and applications for performance standards before delivering them to the client. The performance or benchmark testing is an ongoing function of software quality assurance that extends throughout the life cycle of the project. To build standards into the architecture of a system — the stability and response time of an application is extensively tested by applying a load or stress to the system.

Essentially, ‘load’ means the number of users using the application while ‘stability’ refers to the system’s ability to withstand the load created by the intended number of users. ‘Response time’ indicates the time taken to send a request, run the program and receive a response from a server.

Load testing on applications can be a challenging ordeal if a performance testing strategy is not predetermined. Testing tasks require multifaceted skill-sets — from writing test scripts, monitoring and analyzing test results to tweaking custom codes and scripts, and developing automated test scenarios for the actual testing.

So, is load testing on applications really necessary?

Quality testing ensures that the system is reliable, built for capacity and scalable. To achieve this, the involved stakeholders decide the budget considering its business impact.

Now, this raises a question — how do we predict traffic based on past trends? and how can we make the system more efficient to handle traffic without any dropouts? Also, if and when we hit peak loads, then how are we going to address the additional volume? For this, it is crucial to outline the performance testing strategy beforehand.

5 Key Benefits of Performance Testing

  1. It identifies the issues at the early stage before they become too costly to resolve (for example, exposing bugs that do not surface in cursory testing, such as memory management bugs, memory leaks, buffer overflows, etc.).
  2. Performance testing reduces development cycles, produces better quality and more scalable code.
  3. It prevents revenue and credibility loss due to poor web site performance.
  4. To enable intelligent planning for future scaling.
  5. It ensures that the system meets performance expectations (response time, throughput, etc.) under-designed levels of load.

Organizations don’t prefer manual testing these days because it is expensive and requires human resources and hardware. It is also quite complex to coordinate and synchronize multiple testers. Also, repeatability is limited in manual testing.

To find the stability and response time of each API, we can test different scenarios by varying the load at different time intervals on the application. We can then automate the application by using any performance testing tool.

Performance Testing Tools

There are a bunch of different tools available for testers such as Open Source testing Tools — Open STA Diesel Test, TestMaker, Grinder, LoadSim, J-Meter, Rubis; Commercial testing tools— LoadRunner, Silk Performer, Qengine, Empirix e-Load.

Among these, the most commonly used tool is Apache J-Meter. It is a 100% Java desktop application with a graphical interface that uses the Swing graphical API. It can, therefore, run on any environment/workstation that accepts Java virtual machine, for example, Windows, Linux, Mac, etc.

We can automate testing the application by integrating the ‘selenium scripts’ in the J-Meter tool. (The software that can perform load tests, performance-functional tests, regression tests, etc. on different technologies.)

[Related: A Complete Guide to Regression Testing in Agile]

If the project is large in scope and the number of users keeps increasing day-by-day then the server’s load will be greater. In such situations, Performance testing is useful to identify at what point the application will crash. To find the number of errors and warnings in the code, we use the J-Meter tool.

How J-Meter Works

J-Meter simulates a group of users sending requests to a target server and returns statistics that show the performance/functionality of the target server/application via tables, graphs, etc.

The following figure illustrates how J-Meter works:

How J-Meter works - Load Testing on applications

The J-Meter performance testing tool can find the performance of any application (no matter whatever the language used to build the project).

First, it requires a test plan which describes a series of steps that the J-Meter will execute when run. A complete test plan will consist of one or more thread groups, samplers, logic controllers, listeners, timers, assertions and configuration elements.

The ‘thread’ group elements are the beginning of any test plan. Thread group element controls the number of threads J-Meter will use during the test run. We can also control the following via thread group: setting the number of threads, setting the ramp-up time and setting the loop count. The number of threads implies the number of users to the server application, while the ramp-up period defines the time taken by J-Meter to get all the threads running. Loop count identifies the number of times to execute the test.

After creating the ‘thread’ group, we need to define the number of users, iterations and ramp-up time (or usage time). We can create virtual servers depending on the number of users defined in the thread group and start performing the action based on the parameters defined. Internally J-Meter will record all the results like response code, response time, throughput, latency, etc. It produces the results in the form of graphs, trees and tables.

J-Meter has two types of controllers: Samplers and Logic controllers. Samplers allow the J-Meter to send specific requests to a server, while Logic controllers control the order of processing of samplers in a thread. They can change the order of requests coming from any of their child elements. Listeners are then used to view the results of samplers in the form of reporting tables, graphs, trees or simple text in some log files.

Please remember, always do performance testing by changing one parameter at a time. This way, you’ll be able to monitor response and throughput metrics and correct discrepancies accordingly. The real purpose of load testing is to ensure that the application or site is functional for businesses to deliver real value to their users — so test practically, and think like a real user.

If you’ve any queries or doubts, please feel free to write to hello@mantralabsglobal.com.

About the author: Syed Khalid Hussain is a Software Engineer-QA at Mantra Labs Pvt Ltd. He is a pro at different QA testing methodologies and is integral to the organization’s testing services.

Load Testing on Applications FAQs

What is the purpose of load testing?

Load testing is done to ensure that the application is capable of withstanding the load created by the intended number of users (web traffic).

Which tool is used for load testing?

There are open source and commercial tools available for load testing. 
Open Source Tools are — Open STA Diesel Test, TestMaker, Grinder, LoadSim, J-Meter, Rubis. Commercial testing tools are — LoadRunner, Silk Performer, Qengine, Empirix e-Load.

How load testing is done?

Load testing is done using test scripts, monitoring and analyzing test results and developing automated test scenarios.

Check out these articles to catch the latest trends in mobile apps:

  1. 7 Important Points To Consider Before Developing A Mobile App
  2. The Clash of Clans: Kotlin Vs. Flutter
  3. Google for India September event 2019 key highlights
  4. Learn Ionic Framework From Scratch in Less Than 15 Minutes!
  5. AI in Mobile Development
  6. 10 Reasons to Learn Swift Programming Language
Cancel

Knowledge thats worth delivered in your inbox

Embracing the Digital Frontier: Transforming the Patient Journey in Pharma

In the realm of pharmaceuticals, the digital revolution is not just a buzzword; it’s a seismic shift reshaping the landscape of patient care. From discovery to delivery, digital technologies are revolutionizing every facet of the pharmaceutical industry. One of the most profound impacts is evident in the patient journey. Today’s Patients are more informed, engaged, and empowered than ever, thanks to the proliferation of digital tools and platforms. In this comprehensive exploration, we will delve into the multifaceted ways digital is redefining the patient journey in pharmaceuticals.

According to a report by Accenture on the rise of digital health, these are the key challenges to overcome:

  • 99% of respondents indicated that the development and commercialization of Digital Health solutions has accelerated in the past two years. As part of this, companies require various new and strengthened capabilities to execute their visions. 
  • Patients and health professionals need to trust that the data collected is accurate, safe, and secure for them to feel comfortable using it. 
  • Fragmented data or lack of access to data has been a barrier to development. An overarching guideline on data privacy is needed.

Leveraging Digital Solutions for Accessible Drug Delivery

In the pharmaceutical industry, the journey of medication from production facilities to patients’ hands is evolving with the integration of digital solutions. These technologies not only streamline logistics but also ensure that medications reach even the most remote and underserved areas. Let’s delve into how digital innovations are transforming drug delivery and backend channels in the pharmaceutical industry.

Digital Backend Channels and Supply Chain Management:

Pharmaceutical firms leverage digital tech for efficient backend operations. Software like SAP Integrated Business Planning and Oracle SCM Cloud enable real-time tracking, inventory management, and demand forecasting. With AI and analytics, companies adapt to market changes swiftly, ensuring timely medication delivery and optimized supply chain logistics.

Innovative Digital Drug Delivery Technologies:

  1. Controlled Monitoring Systems: Digital temperature monitoring systems provide digital temperature monitoring solutions using IoT sensors and cloud platforms, safeguarding temperature-sensitive medications during transit, ensuring compliance with regulatory standards, and minimizing product spoilage risk.
  1. Last-Mile Delivery Platforms: Zipline and Nimblr.ai, along with LogiNext, employ digital last-mile delivery solutions, using drones and AI-powered logistics to transport vital medical supplies efficiently to remote regions, improving accessibility for underserved communities.
  1. Telemedicine Integration with Prescription: Integrated telemedicine and prescription platforms, like Connect2Clinic, are rapidly growing in response to COVID-19. With telehealth claims at 38 times pre-pandemic levels, the industry is projected to hit $82 billion by 2028, with a 16.5% annual growth rate. Mantra Labs partnered with Connect2Clinic, enabling seamless coordination between healthcare providers, pharmacies, and patients. This facilitates virtual consultations and electronic prescribing, benefiting remote patients with medical advice and prescriptions without in-person visits. These platforms enhance healthcare access, medication adherence, and patient engagement through personalized care plans and reminders.
  1. Community Health Worker Apps: CommCare and mHealth empower community health workers with digital tools for medication distribution, education, and patient monitoring. Customizable modules enable tracking inventories, health assessments, and targeted interventions, extending pharmaceutical reach to remote communities, and ensuring essential medications reach those in need.

Through the strategic deployment of digital solutions in drug delivery and backend channels, pharmaceutical companies are overcoming barriers to access and revolutionizing healthcare delivery worldwide. By embracing innovation and collaboration, they are not only improving patient outcomes but also advancing toward a more equitable and inclusive healthcare system.

Personalized Medicine:

Wearable devices and mobile apps enable personalized medicine by collecting real-time health data and tailoring treatment plans to individual needs. For example, fitness trackers monitor activity and vital signs, customizing exercise and medication. Personalized medicine optimizes efficacy, minimizes adverse effects, and enhances patient satisfaction by leveraging patient-specific data.

Enhanced Patient Engagement:

Pharmaceutical firms utilize digital platforms for patient engagement, fostering support and education during treatment. Through social media, mobile apps, and online communities, patients connect, access resources, and receive professional support. Two-way communication enhances collaboration and decision-making, boosting treatment adherence, health outcomes, and consumer loyalty. Click here to know more.

Data-Driven Insights:

The abundance of healthcare data offers pharma companies unique opportunities to understand patient behavior and treatment patterns. By leveraging big data analytics and artificial intelligence, they extract actionable insights from various sources like electronic health records and clinical trials. These insights inform targeted marketing, product development, and patient support programs. However, ensuring data privacy and security is crucial, requiring robust regulatory frameworks and transparent practices in the digital era.

Challenges and Considerations:

Maximizing the benefits of digital technologies requires addressing challenges like patient data privacy and equitable access to healthcare tech. Stringent safeguards are needed to protect confidentiality and trust, alongside efforts to bridge the digital divide. Regulatory frameworks must evolve to balance innovation with patient safety and security amidst rapid advancements in digital health.

Key Considerations for Pharma Companies in Embracing Digital Innovation:

  • Prioritize patient-centricity in digital initiatives, focusing on improving patient outcomes and experiences.
  • Invest in robust data privacy and security measures to build and maintain patient trust.
  • Foster collaboration and partnerships with technology companies and healthcare providers to drive innovation and scalability.
  • Leverage analytics and AI to derive actionable insights from healthcare data and inform decision-making processes.
  • Continuously monitor and adapt to regulatory requirements and industry standards to ensure compliance and mitigate risks.

Conclusion:

The digital revolution is not just a paradigm shift but a catalyst for transformation across the pharmaceutical industry. By embracing digital technologies, pharma companies can unlock new opportunities to enhance the patient journey, improve treatment outcomes, and drive sustainable growth. However, realizing the full potential of digital health requires collaboration, innovation, and a steadfast commitment to addressing the challenges and considerations inherent in this transformative journey. As we navigate the digital frontier, the future of patient care promises to be more connected, personalized, and empowering than ever before.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot