Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(6)

Manufacturing(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(33)

Technology Modernization(9)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(41)

Insurtech(67)

Product Innovation(59)

Solutions(22)

E-health(12)

HealthTech(25)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(154)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(8)

Computer Vision(8)

Data Science(24)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

5 Real-world Blockchain Use-cases in Insurance Industry

Nearly 80% of insurance executives have either already adopted or planning to pilot blockchain technology across their business units. The level of trust, transparency, and immutability that blockchain (distributed ledger technology) provides is impeccable. 

blockchain insurance use cases- benefits

Blockchain offers an independently verifiable dataset so that insurers, as well as customers, need not suffer from decisions based on inappropriate/incomplete information. In the instances of travel insurance, blockchain-based systems use external data sources to validate whether a flight was missed or canceled. Accordingly, insurers can decide on processing refund claims. Well, blockchain can handle even more complex situations of road accidents by accurately determining the vehicle or human fault.

The 5 practical blockchain use-cases in the insurance industry are-

  1. Fraud detection
  2. IoT & Blockchain together to structure data
  3. Multiple risk participation/Reinsurance
  4. On-demand insurance
  5. Microinsurance

Fraud Detection

In the US alone, every year fraudulent claims account for more than $40 billion, which is excluding health insurance. Despite digitization, the standard methods fail to recognize fraud. Blockchain can help in fraud detection and prevention to a great extent. 

Blockchain ensures that all the executed transactions are permanent and timestamped. I.e. no one, including insurers, can modify the data preventing any kind of breaches. This data can further help in defining patterns of fraudulent transactions, which insurers can use in their fraud prevention algorithms. 

Fraud detection using blockchain use case: Etherisc

Powered by smart contracts, Etherisc independently verifies claims by using multiple data sources. For example, for crop insurance claims, it compares satellite images, weather reports, and drone images with the image provided by the claimant. 

IoT & Blockchain together to structure data

As IoT will connect more and more devices, the amount of data generated from each of the devices will increase significantly. For instance, there were 26.66 billion active IoT devices in 2019 and nearly 127 IoT devices connect to the internet every second

This data is extremely valuable for insurers to develop accurate actuarial models and usage-based insurance models. Considering the auto insurance sector, the data collected about driving time, distances, acceleration, breaking patterns, and other behavioral statistics can identify high-risk drivers. 

But, the question is — how to manage the enormous data as millions of devices are communicating every second. 

And the answer is a blockchain!

It allows users (insurers) to manage large and complex networks on a peer-to-peer basis. Instead of building expensive data centers, blockchain offers a decentralized platform to store and process data. 

Multiple risk participation/Reinsurance

Reinsurance is insurance for insurers. It protects the insurers when large volumes of claims come in. 

Also read – 5 biggest insurance claims payouts in history

Because of information silos and lengthy processes, the current reinsurance system is highly inefficient. Blockchain can bring twofold advantages to reinsurers. One — unbreached records for accurate claims analysis and two — speeding-up the process through automated data/information sharing. PwC estimates that blockchain can help the reinsurance industry save up to $10 billion by improving operational efficiency.

For example, in 2017, B3i (a consortium for exploring blockchain in insurance) launched a smart contract management system for Property Cat XOL contracts. It is a type of reinsurance for catastrophe insurance.

On-demand insurance

On-demand insurance is a flexible insurance model, where policyholders can turn on and off their insurance policies in just a click. More the interactions with policy documents, the greater the hassle to manage the records. 

For instance, on-demand insurance requires underwriting, policy documents, buyers records, costing, risk, claims, and so on much more than traditional insurance policies.

But, thanks to blockchain technology, maintaining ledgers (records) has become simpler. On-demand insurance players can leverage blockchain for efficient record-keeping from the inception of the policy until its disposal. An interesting blockchain insurance use cases is that of Ryskex — a German InsurTech, founded in 2018. It provides blockchain-powered insurance platform to B2B insurers to transfer risks faster and more transparently. 

Microinsurance

Instead of an all-encompassing insurance policy, microinsurance offers security against specific perils for regular premium payments, which are far less than regular insurances. Microinsurance policies deliver profits only when distributed in huge volumes. However, because of low profit-margin and high distribution cost, despite immediate benefits, microinsurance policies don’t get the deserved traction. 

Blockchain can offer a parametric insurance platform. With this, insurers will need fewer local agents and “oracles” can replace adjusters on the ground. For example, Surity.ai uses blockchain to offer microinsurance to the Asian populace, especially those not having access to the services of banks or other financial organizations. 

For further queries around blockchain / insurance use cases, please feel free to drop us a word at hello@mantralabsglobal.com.

Related blockchain articles – 

Cancel

Knowledge thats worth delivered in your inbox

Smart Manufacturing Dashboards: A Real-Time Guide for Data-Driven Ops

Smart Manufacturing starts with real-time visibility.

Manufacturing companies today generate data by the second through sensors, machines, ERP systems, and MES platforms. But without real-time insights, even the most advanced production lines are essentially flying blind.

Manufacturers are implementing real-time dashboards that serve as control towers for their daily operations, enabling them to shift from reactive to proactive decision-making. These tools are essential to the evolution of Smart Manufacturing, where connected systems, automation, and intelligent analytics come together to drive measurable impact.

Data is available, but what’s missing is timely action.

For many plant leaders and COOs, one challenge persists: operational data is dispersed throughout systems, delayed, or hidden in spreadsheets. And this delay turns into a liability.

Real-time dashboards help uncover critical answers:

  • What caused downtime during last night’s shift?
  • Was there a delay in maintenance response?
  • Did a specific inventory threshold trigger a quality issue?

By converting raw inputs into real-time manufacturing analytics, dashboards make operational intelligence accessible to operators, supervisors, and leadership alike, enabling teams to anticipate problems rather than react to them.

1. Why Static Reports Fall Short

  • Reports often arrive late—after downtime, delays, or defects have occurred.
  • Disconnected data across ERP, MES, and sensors limits cross-functional insights.
  • Static formats lack embedded logic for proactive decision support.

2. What Real-Time Dashboards Enable

Line performance and downtime trends
Track OEE in real time and identify underperforming lines.

Predictive maintenance alerts
Utilize historical and sensor data to identify potential part failures in advance.

Inventory heat maps & reorder thresholds
Anticipate stockouts or overstocks based on dynamic reorder points.

Quality metrics linked to operator actions
Isolate shifts or procedures correlated with spikes in defects or rework.

These insights allow production teams to drive day-to-day operations in line with Smart Manufacturing principles.

3. Dashboards That Drive Action

Role-based dashboards
Dashboards can be configured for machine operators, shift supervisors, and plant managers, each with a tailored view of KPIs.

Embedded alerts and nudges
Real-time prompts, like “Line 4 below efficiency threshold for 15+ minutes,” reduce response times and minimize disruptions.

Cross-functional drill-downs
Teams can identify root causes more quickly because users can move from plant-wide overviews to detailed machine-level data in seconds.

4. What Powers These Dashboards

Data lakehouse integration
Unified access to ERP, MES, IoT sensor, and QA systems—ensuring reliable and timely manufacturing analytics.

ETL pipelines
Real-time data ingestion from high-frequency sources with minimal latency.

Visualization tools
Custom builds using Power BI, or customized solutions designed for frontline usability and operational impact.

Smart Manufacturing in Action: Reducing Market Response Time from 48 Hours to 30 Minutes

Mantra Labs partnered with a North American die-casting manufacturer to unify its operational data into a real-time dashboard. Fragmented data, manual reporting, delayed pricing decisions, and inconsistent data quality hindered operational efficiency and strategic decision-making.

Tech Enablement:

  • Centralized Data Hub with real-time access to critical business insights.
  • Automated report generation with data ingestion and processing.
  • Accurate price modeling with real-time visibility into metal price trends, cost impacts, and customer-specific pricing scenarios. 
  • Proactive market analysis with intuitive Power BI dashboards and reports.

Business Outcomes:

  • Faster response to machine alerts
  • Quality incidents traced to specific operator workflows
  • 4X faster access to insights led to improved inventory optimization.

As this case shows, real-time dashboards are not just operational tools—they’re strategic enablers. 

(Learn More: Powering the Future of Metal Manufacturing with Data Engineering)

Key Takeaways: Smart Manufacturing Dashboards at a Glance

AspectWhat You Should Know
1. Why Static Reports Fall ShortDelayed insights after issues occur
Disconnected systems (ERP, MES, sensors)
No real-time alerts or embedded decision logic
2. What Real-Time Dashboards EnableTrack OEE and downtime in real-time
Predictive maintenance using sensor data
Dynamic inventory heat maps
Quality linked to operators
3. Dashboards That Drive ActionRole-based views (operator to CEO)
Embedded alerts like “Line 4 down for 15+ mins”
Drilldowns from plant-level to machine-level
4. What Powers These DashboardsUnified Data Lakehouse (ERP + IoT + MES)
Real-time ETL pipelines
Power BI or custom dashboards built for frontline usability

Conclusion

Smart Manufacturing dashboards aren’t just analytics tools—they’re productivity engines. Dashboards that deliver real-time insight empower frontline teams to make faster, better decisions—whether it’s adjusting production schedules, triggering preventive maintenance, or responding to inventory fluctuations.

Explore how Mantra Labs can help you unlock operations intelligence that’s actually usable.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot