Astronaut loading animation Circular loading bar

Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(5)

Customer Journey(12)

Design(35)

Solar Industry(6)

User Experience(55)

Edtech(10)

Events(34)

HR Tech(2)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(17)

Testing(9)

Android(47)

Backend(30)

Dev Ops(7)

Enterprise Solution(27)

Technology Modernization(2)

Frontend(28)

iOS(43)

Javascript(15)

AI in Insurance(35)

Insurtech(63)

Product Innovation(49)

Solutions(19)

E-health(9)

HealthTech(22)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(132)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(17)

FinTech(50)

Banking(7)

Intelligent Automation(26)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

Medical Image Management: DICOM Images Sharing Process

By :
5 minutes, 29 seconds read

For modern healthcare organizations, extending better patient care across the service continuum involves new challenges that surround sharing information over a distributed network. Effectively sharing patient information remains a challenge. However, the inability to access these records in a time-sensitive manner results in re-imaging and re-testing the patients. It affects both — ‘time-to-treatment’ and the bottom line. Effective medical image management thus becomes crucial for every digital healthcare enterprise. 

The release process for medical images is altogether complicated — brimming with security related-risks. Images (such as X-Ray Scans, MRI scans, PET scans, etc.) are created and released across several departments and systems while being purposefully kept ‘out-of-reach’ from a host of unauthorized users.

Training & controls on release policies and procedures require ‘health information management’ expertise. It’s because image Handling (electronically) can become susceptible to data corruption, complex accessibility/sharing issues and high-security risks. All of these raise potential red flags for health information management (HIM) professionals.

So how does Medical Image sharing work in this environment? What, if any — are the safeguards surrounding the ‘release’ process?

Medical Image Management: Sharing DICOM Images across healthcare enterprises

Before we go further, let’s delve into the term ‘Medical Imaging’. According to the WHO, the technique embodies different imaging modalities and processes to image the human body (creating visual representations) for diagnostic and treatment purposes. — making it crucial for improving public health initiatives across all population groups.

First, the image is captured using a medical imaging device (routine imaging techniques like ultrasound, MRI, etc.). Then it is necessary to archive and store the images for future use and further processing. Unlike regular images (.png, .jpeg), medical images use DICOM format for storage. DICOM is Digital Imaging and Communication in Medicine standard. The medical practitioner responsible for acquiring and interpreting such medical images is a ‘Radiologist’. And the system they rely on for storing electronic image data is ‘PACS’ (Picture Archiving and Communication System).

If a healthcare organization or an outside consultant (physician, clinician) needs access to an individual patient’s medical images, then the access and retrieval will have to go through PACS. Typically, a Radiologist has authority to control and operate PACS.

Here is a simple process diagram of a medical imaging system —

medical imaging system process diagram

A Typical HIPAA-compliant Medical Imaging Management System places a request (for a specific file) to ‘PACS’ via an intermediary system known as ‘Edge Server’. The sole purpose of the Edge Server is to function as a request-node so that other hospitals or physicians can contact the particular radiologist (who possesses the images stored in PACS) and place a request to access a copy of the file in question.

[Related: Modern Medical Enterprises Absolutely Need Test Automation. Here’s Why.]

Medical image sharing use cases

Critical use cases arise for medical image sharing involving support for:

  • Remote image viewing (out of network)
  • Specialist consults
  • Telehealth (examples such as teleburn, telestroke)
  • Trauma transfers
  • Ambulatory image review

Typically, PACS store digital medical images locally for retrieval. A PACS consists of four major components: 

  1. The imaging modalities such as X-ray plain film (PF), CT and MRI 
  2. a secure network for the transmission of patient information
  3. workstations for interpreting and reviewing images
  4. archives for the storage and retrieval of images and reports. 

To communicate with the PACS server we use DICOM messages that are similar to DICOM image ‘headers”, but with different attributes. The Edge Server manages several functions that allow users to sort through hundreds of thousands of large-volume data and retrieve a specific file from a database either stored in ‘PACS’ or on the ‘MIMS’.

Each of the three highlighted sections (see diagram) can perform various functions, while communication is defined through specific rules and standards that are legally enforced and universally followed.

DICOM medical image sharing via PACS and MIMS

Through the ‘Edge Server’, we can access images stored in PACS. The ‘Management Services’ operation is the first and foremost feature. It means that a user can control & maintain the complete functionality of the server through this. Using ‘Remote Authentication’, users can obtain centralized authorization and authentication to request files from PACS. Please note, Remote Authentication is a networking protocol operating by way of specific ports.

To verify basic DICOM connectivity to the server — i.e, to check if the server is live or not, a C-Echo message is sent to ping the server, after which it will wait for its response. Once identifying the server as live, a user can perform querying and retrieval-based operations. Next, the user can begin the process of requesting DICOM images from the Medical Image Management System — known as ‘Ingestion’. DICOM Ingestion involves pre-assigned IP and port addresses (default ports are 2104-2111).

Basic DICOM Operations

Client: First, it’s important to check the location of the specific image(s) on a particular server. For this, a query-based C-FIND operation sends a request to the server. The user establishes a network connection to the PACS server and prepares a C-FIND request message (which is a list of DICOM attributes). The user then fills in the C-FIND request message with ‘keys’ that match. (E.g. to query for a patient ID, the user fills the patient ID attribute with the patient’s ID.) Then, the C-FIND request message is sent to the server.

Server: The server reverts a list of C-FIND response messages. Each of these messages contain a list of DICOM attributes with values for each match. It then initiates C-MOVE request using the DICOM network protocol to retrieve images from the PACS server. 

One can retrieve images at the Study, Series or Image (instance) level. The C-MOVE request specifies where the retrieved instances should be sent (using separate C-STORE messages). The C-STORE operation, also known as DICOM Push simply pushes (sends) the images to the PACS server (or P2P — Push to PACS). 

C-STORE message implements the DICOM storage service. The SCU sends a C-STORE-RQ (request) message to the server, which includes the actual dataset to transfer. The server answers by returning a C-STORE-RSP (response) message to the user, communicating success or failure of the storage request.

DICOM Images Benefits

Using DICOM images, health management professionals, physicians, and radiologists can utilize secure protocols in handling confidential medical image data. It extends the ability to view such images discreetly and instantly; avoiding duplication costs; and reducing unnecessary radiation exposure to patients.

Medical Image Sharing furthers the “Health 2.0” initiative by being able to instantly and electronically exchange medical information between physicians, as well as with patients — improving communication within the industry.

[Related: How AI is innovating healthcare sector?]

About the author: Rijin Raj is a Senior Software Engineer-QA at Mantra Labs, Bangalore. He is a seasoned tester and backbone of the organization with non-compromising attention to details.

Related:

DICOM FAQs

What is the DICOM Image format?

DICOM stands for — Digital Imaging and Communication. It is a medical standard for sharing a patient’s MRI, X-ray, and other image files over the internet.

How are DICOM Images stored?

Unlike regular images (png, jpg, etc.) DICOM is a secure format for storing confidential medical images. Usually, PACS (Picture Archiving and Communication System) and MIMS (Medical Image Management System) are used to store DICOM Images.

What is DICOM used for?

DICOM is used for securely storing and retrieving confidential images in distributed networks (internet).

Why is DICOM important?

Using DICOM images, health management professionals, physicians, and radiologists can securely handle confidential medical image data.

Cancel

Knowledge thats worth delivered in your inbox

CX Innovations in Healthcare: Doctor Engagement Strategies in the USA

The importance of customer experience (CX) in healthcare cannot be overstated. A positive CX is crucial not only for patient satisfaction but also for the overall efficiency and success of healthcare providers. One critical aspect of CX in healthcare is doctor engagement, which refers to the strategies and practices used to involve doctors in the healthcare delivery process actively.

Doctor engagement is essential for several reasons. Firstly, engaged doctors are more likely to be committed to their work, leading to better patient care and outcomes. Secondly, effective doctor engagement can improve communication and collaboration among healthcare professionals, enhancing the quality of healthcare services. Finally, engaged doctors can provide valuable insights and feedback, helping healthcare organizations to continuously improve their services and adapt to changing patient needs.

State of Doctor Engagement: Pre-Innovation Era

Traditionally, doctor engagement in healthcare was primarily focused on face-to-face interactions and personal relationships. Doctors were engaged through regular meetings, conferences, and direct communication with hospital administrators and other healthcare staff. While these methods were effective to some extent, they had several limitations.

One major limitation was the lack of scalability. As healthcare organizations grew and the number of doctors increased, it became challenging to maintain the same level of personal engagement with each doctor. Additionally, traditional engagement methods were often time-consuming and resource-intensive, making them unsustainable in the long term.

Another limitation was the lack of data-driven insights. Traditional engagement practices relied heavily on anecdotal evidence and personal experiences, which did not always provide a complete or accurate picture of doctor engagement levels. This made it difficult for healthcare organizations to measure the effectiveness of their engagement strategies and identify areas for improvement.

Furthermore, the pre-innovation era of doctor engagement often lacked customization and flexibility. Engagement strategies were typically one-size-fits-all, failing to account for the diverse needs and preferences of individual doctors. This lack of personalization could lead to disengagement among doctors who felt that their unique contributions and perspectives were not being valued.

Emerging Problems and the Need for Innovation

As the healthcare industry continued to evolve, several emerging problems highlighted the need for innovation in doctor engagement strategies. One significant issue was the increasing complexity of healthcare delivery. With advancements in medical technology and the growing diversity of patient needs, doctors were required to navigate more complex treatment options and care protocols. Traditional engagement methods often fell short in providing the support and resources needed to manage this complexity effectively.

Another problem was the rising demand for healthcare services, fueled by factors such as an aging population and the prevalence of chronic diseases. This increased demand put pressure on doctors, leading to burnout and dissatisfaction. Without effective engagement strategies, healthcare organizations struggle to retain skilled doctors and maintain high levels of patient care.

The digital transformation of healthcare also posed challenges for doctor engagement. The adoption of electronic health records (EHRs), telemedicine, and other digital tools required doctors to adapt to new ways of working. However, the lack of proper training and support for these digital tools often led to frustration and resistance among doctors, hindering their engagement.

Moreover, the shift towards value-based care, which focuses on patient outcomes rather than the volume of services provided, required a more collaborative approach to healthcare. Traditional doctor engagement methods were not always conducive to fostering teamwork and shared decision-making, making it difficult to align doctors with the goals of value-based care.

These emerging problems underscored the need for innovative solutions that could address the changing dynamics of healthcare delivery and support effective doctor engagement in the modern era.

Innovative Solutions: Transforming Doctor Engagement

In response to these challenges, a range of innovative solutions emerged to transform doctor engagement in healthcare. One key innovation was the development of digital platforms and tools designed specifically for doctor engagement. These platforms provided a centralized hub for communication, collaboration, and access to resources, making it easier for doctors to connect with their peers and stay informed about the latest developments in their field.

Another significant innovation was the use of data analytics and artificial intelligence (AI) in doctor engagement. By analyzing data on doctor behavior, preferences, and performance, healthcare organizations could gain insights into what drives doctor engagement and tailor their strategies accordingly. AI-powered tools could also help identify patterns and trends in doctor engagement, enabling proactive interventions to prevent disengagement.

Gamification techniques were also applied to doctor engagement, leveraging the principles of game design to make engagement activities more interactive and rewarding. For example, doctors could earn points or badges for participating in training sessions, contributing to research, or achieving certain performance metrics. This approach helped to motivate doctors and make engagement more enjoyable.

In addition, there was a growing emphasis on personalized engagement strategies that recognized the individual needs and preferences of doctors. Personalized communication, tailored training programs, and flexible engagement options allowed doctors to engage in ways that suited their unique circumstances and preferences.

These innovative solutions represented a significant shift in how healthcare organizations approached doctor engagement. By leveraging technology, data, and personalization, they could create more effective and sustainable engagement strategies that address the challenges of modern healthcare delivery.

To illustrate the impact of these innovative solutions, let’s examine some case studies of healthcare organizations that have successfully implemented new doctor engagement strategies:

Digital Collaboration Platform

A large hospital system introduced a digital collaboration platform for its doctors. This platform allowed physicians to easily communicate with each other, share knowledge, and access patient information securely. As a result, the hospital saw improved coordination among doctors, leading to better patient outcomes and increased doctor satisfaction. A real-world example can be given of Connect2Clinic, a doctors’ portal developed by Mantra Labs for Alkem Labs. The solution allows doctors to manage their patients efficiently with lots of handy features and effectively run operations. It is a complete clinic management solution.

AI-Driven Feedback Tool

Another healthcare provider implemented an AI-driven tool that collected and analyzed feedback from doctors in real time. This tool helped identify areas for improvement in hospital operations and doctor support services. By addressing these issues promptly, the healthcare provider was able to enhance doctor engagement and reduce turnover rates.

Personalized Learning Programs

A specialty clinic developed personalized learning programs for its doctors, offering courses and resources tailored to their interests and career goals. This approach led to higher participation rates in training programs and a more engaged medical staff who felt valued and supported in their professional development.

Challenges and Considerations in Implementing Innovations

While innovative solutions for doctor engagement offer numerous benefits, healthcare organizations may encounter challenges in their implementation. Here are some key considerations:

  1. Resistance to Change: Doctors, like any other professionals, may resist new technologies or processes. Addressing concerns, providing adequate training, and demonstrating the value of innovations are crucial steps in overcoming resistance.
  2. Integration with Existing Systems: New engagement tools must seamlessly integrate with existing healthcare systems, such as EHRs, to avoid disruption and ensure smooth operation.
  3. Data Privacy and Security: With the increased use of digital platforms, protecting patient and doctor data is paramount. Healthcare organizations must adhere to strict data privacy regulations and ensure robust security measures are in place.
  4. Cost and Resource Allocation: Implementing new technologies can be costly. Organizations must carefully plan their budgets and resources to support the adoption of innovative engagement strategies.
  5. Measuring Impact: It’s essential to have metrics in place to evaluate the effectiveness of engagement initiatives. Regular monitoring and adjustment of strategies based on data are necessary for long-term success.

Future of Doctor Engagement in Healthcare

Looking ahead, the future of doctor engagement in healthcare is likely to be shaped by ongoing technological advancements and evolving healthcare needs. Here are some potential trends:

  1. Increased Use of Telemedicine: The COVID-19 pandemic has accelerated the adoption of telemedicine. This trend is expected to continue, offering new opportunities for engaging doctors remotely.
  2. Personalized Engagement Platforms: As technology advances, we can expect more sophisticated platforms that offer personalized engagement experiences for doctors, tailored to their individual needs and preferences.
  3. Collaborative Healthcare Ecosystems: The future may see more integrated and collaborative healthcare ecosystems, where doctors, patients, and other stakeholders are closely connected through digital platforms, enhancing engagement and communication.
  4. Focus on Well-being: With growing awareness of doctor burnout, future engagement strategies may place a greater emphasis on supporting doctors’ well-being and work-life balance.
  5. Leveraging AI and Machine Learning: These technologies will continue to play a significant role in analyzing engagement data, predicting trends, and providing insights for improving doctor engagement strategies.

As healthcare continues to evolve, staying ahead of these trends and adapting engagement strategies accordingly will be crucial for healthcare organizations seeking to foster a highly engaged and motivated medical workforce.

Doctor engagement is a critical component of delivering high-quality healthcare. As the healthcare landscape evolves, so too must the strategies for engaging doctors. The innovations discussed in this blog, from digital collaboration platforms to personalized learning programs, offer promising solutions to the challenges of doctor engagement in the modern era.

The success stories and data presented highlight the tangible benefits of these innovative strategies, including improved patient outcomes, increased doctor satisfaction, and enhanced operational efficiency. However, healthcare organizations must navigate challenges such as resistance to change, data privacy concerns, and the integration of new technologies with existing systems.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot