Try : Insurtech, Application Development

Edtech(3)

Events(27)

Life@mantra(8)

Logistics(1)

Strategy(6)

Testing(5)

Android(42)

Backend(29)

Dev Ops(2)

Enterprise Solution(13)

Frontend(29)

iOS(37)

Javascript(13)

AI in Insurance(21)

Insurtech(49)

Product Innovation(28)

Solutions(8)

Augmented Reality(7)

Customer Journey(7)

Design(5)

User Experience(19)

Artificial Intelligence(81)

Bitcoin(7)

Blockchain(14)

Cognitive Computing(6)

Computer Vision(5)

Data Science(12)

FinTech(38)

Intelligent Automation(19)

Machine Learning(42)

Natural Language Processing(5)

Modern Medical Enterprises Absolutely Need Test Automation. Here’s Why.

Nivin Simon
3 minutes, 38 seconds read

The healthcare industry is getting a comprehensive digital facelift. Digital Health Systems (DHS) that use new digital technologies like artificial intelligence & robotics are delivering smarter healthcare services and better health outcomes to the masses. Health organizations are increasingly relying on them to improve care coordination, chronic disease management and the overall patient experience. These health systems are also alleviating repetitive administrative tasks from the roles of healthcare professionals, allowing them more time to practice actual healthcare.

The Modern Medical Enterprise draws on digital-enabled technologies such as telemedicine, AR/VR and remote-monitoring wearables to diagnose diseases and promote self-care. These applications rely on high-volume processing of patient data on a frequent basis.  Healthcare organizations also need to share/receive this information securely over a distributed network. However, sharing patient information remains a challenge, while the inability to access these records in a time-sensitive manner can affect the time-to-treatment for patients.

Deploying digital health systems that are both compliant to regulatory standards and functionally stable for a large number of concurrent users requires significant manned effort. Moreover, QA teams comprised of manual testers may end up working on repetitive manual test case scenarios that can lead to challenges in scaling or rolling out new features. 

How can the modern healthcare enterprise keep pace with issues posed by the safe deployment of their digital health systems? Automated Testing is a hallmark process of any digital transformation project. It gives enterprises the ability to shorten their release cycles and meet their business needs without affecting productivity or operations across the healthcare value chain. Test Automation also allows medical enterprises to run repeatable and extensible test cases against real-world scenarios.

Test Automation Use Case

The growth of DevOps and the rise of mobile-first applications are responsible for driving the growth of the test automation market globally. Today, enterprises are able to go faster-to-market owing to the technological advancements in quality assurance & testing.

For instance, in the case of a large US-based teleradiology firm that offers enterprise Imaging Solutions for improving patient care — a stable and reliable system mandated custom-built test automation frameworks. The medical technology company provides fast & secure access to diagnostic quality images using any web enabled device. To achieve this, they have built a cloud-based image sharing platform that allows digital image streaming, diagnostic & clinical viewing, and archiving for healthcare organizations.

Medical Image sharing among healthcare organizations is altogether brimming with security risks, and requires a complex network of systems to facilitate its smooth functioning. 

medical imaging system architecture
Medical Image Sharing Process among Healthcare Organizations

Also read – How are Medical Images shared among Healthcare Enterprises? 

In order to fulfil their business objectives, Mantra Labs identified key challenges for their testing requirements, namely —

1. Scalability
The platform must be able to support a high number of concurrent users.

2. Fail-over Control

The platform should behave functionally correct under very high loads with stable fail-over capability.


3. Efficiency & Reliability
The platform must scale rapidly when supporting a large user base & multiple formats with minimal page navigation response time.

Several testing components were deployed along with test automation techniques to address the full range of QA issues, including: functional testing, integration testing, GUI testing, and regression testing. 

Mantra Labs created a federated architecture to ensure near-perfect scaling, and true load & data isolation between different tenant organizations. The federated architecture consists of a number of deployments and a central set of components that stores global information like lists of organizations & users, and provides a centralized messaging service. 

test automation process flow diagram for modern medical enterprises
Mantra Labs Test Automation Process

Test Automation Improves Accuracy & Test Coverage

The entire cycle of bug detection in the UI, API and Server Loads involves several weeks of regression manual efforts. By automating tests, techniques like Stochastic Tests can be applied to detect bugs and reduce the overall cycle time.

Through Mantra Labs deep medical domain expertise, in-depth testing practices, intuitive suggestions for platform scaling and successful test automation efforts — significant business objectives were realised over the course for the client. Mantra was able to achieve over 60% reduction in cycle time, and about 65 per cent improvement in bug detection capability before the release cycle.

Nearly 35% of Executive Management objectives revolve around implementing quality checks early in the product life cycle, which can be achieved through test automation. For further queries and details about automated testing, please feel free to reach us at hello@mantralabsglobal.com

Cancel

Knowledge thats worth delivered in your inbox

Insurance consumers around the globe are seeking convenience and expecting better customer experience. From millennials to Gen Z, with the agile connectivity, irrespective of the industry has numerous options to choose from. As the competition intensifies the insurance industry has to jump into the bandwagon of technovation in order to provide improved accuracy, cost-saving and excellent customer experience. 

Here is a list of the marketing trends in insurance that will prove to be a game-changer in the year 2020.

1. Robo Financial Advisors

According to a Business Insider Intelligence forecast, by the year 2020 Robo-advisers will manage investment products worth $1 trillion, which will spike up to $4.6 trillion by as early as 2022.

Robo advisors have been around for quite some time. In the year 2008, during the financial crisis, Jon Stein, a 30-year old entrepreneur launched “Betterment”, the first Robo-advisor. In recent years due to its low investment rates and data input based research results, it has increased in popularity. 

It is basically designed for the people who want to manage their finances with low management cost. Based on respective data inputs, the Robo-advisors offer any advisory services. 

The main purpose behind the making of the Robo-advisor is to bring the financial services to the wide range of population with lower investment cost as compared to the traditional human advisors. Upwardly.com, 5Paisa.com and Goalwise.com are some applications of Robo-advisors.

Behind the scenes of the software of Robo-advisors are actual human beings who track the market regularly and adjust the algorithms based on the current market condition. Robo-advisors are a boon to the end-users as they can invest in direct plans of mutual funds without shelling any commission. However lack of personalization and one-size-fits-all products are the areas of improvement.

2. Data Integration: The Future of Marketing

IDC estimates that, by the year 2020, the digital cosmos will reach 44 zettabytes, further complicating the lives of marketing professionals.

Integrating data sources is vital for any company, whether B2B or B2C to successfully meet Customer Experience expectations thereby drive accelerated sales revenue.

With an integrated source of information, retailers can administer and optimise marketing through KPI’s, metrics and dimensions that would not have been possible with the separate source system. In order to upscale marketing operations, a connected viewpoint is essential to evaluate the campaigns, audiences, events and channels, and drive the strategic goals.

From an operational viewpoint, CRM solution provides the organization with new business and the ERP system allows to manage and drive businesses around obstacles. A good place to start with the data integration is by Integrating these two systems shall provide marketers and the organizational sales-force with vital information, that can be shared with the stakeholders.

3. AI-driven Copywriting

Artificial intelligence can create cancer combating drugs, control self-driving cars, defeat the best brains at incredibly complex board games, but one realm it can’t perform flawlessly is communicating.

To help solve the issue, Google has been feeding it’s AI with more than 11,000 unpublished books, including 3,000 steamy romance titles. 

Autoencoder, a type of AI network, uses a data set to reproduce a result (in this case copywriting) using fewer steps. Insurers can harness this AI capability to create sentences and suggest the best-optimised language to approach the customers.

AI copywriting is evolving to a whole new level. Google granted  €706,000 (£621,000) to the Press Association, to run a news service with computers writing localised news stories. AI with the help of human journalists can write up to 30000 news stories a month and scale up the volume of the stories that would otherwise be impossible to produce manually.  

“Skilled human journalists will still be vital in the process, but Radar allows us to harness artificial intelligence to scale up to a volume of local stories that would be impossible to provide manually. It is a fantastic step forward for PA.”

  • PA’s editor-in-chief, Peter Clifton 

4. Gamification of Insurance

At the nexus of marketing trends ranging from social networking to the IoT to behavioural science and wearable tech;  gamification is a powerful lever for insurers and insurance agents. It creates an enriching digital experience and customer-centric business model.

Gamification offers great potential value to the insurance business process in the realm of consumer engagement and customer experience. From millennials to Gen Z, it has emerged as a useful practice and effective means to target early technology adopters by:

  • Transforming mundane tasks into interesting and fun experiences that keep users returning.
  • Increases brand awareness, brand penetration and affinity.
  • Increase sales by educating customers about product suitability and guide them to buying the product.
  • Motivating people to act in areas of healthcare and wellness, safe driving, financial planning and sustainability.

Ingress and AXA redefined the world of gaming and advertisement. December 5th, 2014, Niantic Labs the creator of ‘Ingress’ partnered with AXA. In the game, AXA Shield was initially only obtainable from AXA Portals, leading you to AXA business locations in person.

5. Advanced AI Capabilities in Insurance

Innovation and technology are the next frontiers in the insurance industry. While automation and IoT are already a reality for insurance, with the advent of AI there has been a holistic approach to Insurance automation. With insurance leveraging AI, it has expanded its reach to more ecosystems than ever before. Deploying AI capabilities in insurance can help make smarter underwriting decisions, fraud detections, risk assessment and create a better customer experience.

AI is driving significant change in business with insurance being no exception. It has the potential to enhance the insurance business model by-

  1. Improving the speed of the workflow: AI and RPA in insurance reduce redundancy of task. Automation of day to day tasks would reduce cost and time consumption thereby increasing accuracy, quality and competency.
  1. Customizing the services for better customer experience: One size no longer fits all, and the same goes for the insurance industry. With focus on individual markets, insurers can create niche usage-based products to sell the packages in a variety of ways.

Parag Sharma, CEO, Manta Labs and AI thought leader is going to speak about the Internet of Intelligent Experiences™: CX for the Digital Insurer at India Insurance Summit and Awards 2020 on March 12, 2020. Catch him live at IISA 2020.

Details

  1. Providing new insights: Insurance is no guessing game. Data in silos is the biggest drawback for any industry. AI in insurance can integrate this data and provide analytics to help actuaries have a better insight while making a decision about a product.

Marketing Trends in Insurance: The Bottom Line

Today, at the core of marketing in Insurance, lies AI, Machine Learning and advanced data analytics to foster better experiences for the end-user. We’ve listed 5 most important trends that have the potential to shape marketing business models for Insurance and InsurTech firms. Be it Robo financial advisors or gamification, impressing customers remains the prime goal for Insurers.

Have thoughts and queries regarding upcoming marketing trends in Insurance? Please feel free to drop us a word at hello@mantralabsglobal.com.

Cancel

Knowledge thats worth delivered in your inbox

Data Science is enormous. It brings forth a scientific approach to gather a massive amount of useful data from raw & disordered information (often collected from open sources). According to recent research, over 2.5 million terabytes of data appear daily. In 2020 every person produces 1.7 MB of data per second. Scientists, Analysts, and numerous other specialists use this data to derive decision-ready insights.

Using data science, marketers can get a clearer picture of their target audience. With this knowledge, any organization’s marketing department can formulate strategies to target customers who portray higher chances of conversion. Also, by delivering values, organizations can eventually maximize revenues. Going with the traditional methodologies, data processing can be a daunting task. Data Science offers a cost-effective solution to businesses seeking data-driven insights.

Let’s delve deeper into 5 most profitable and practical use cases of data science in marketing.

1. Budget Optimization

The primary goal of any marketer is to achieve the highest possible ROI from the allocated budget. This objective is undoubtedly difficult and time-consuming. On top of which, because of changing market dynamics and user preferences, strategies often go off the track leading to unanticipated outcomes.

Data science can be a saviour here. By analyzing the marketing department’s spending and acquisition ratio, organizations can build a model to distribute the budget in the smartest way possible. A clear picture will help marketers to invest money in the most relevant and surplus channels, thus optimizing key metrics.

2. Defining Audience Persona

While every marketer is familiar with the process of building the target audience portrait, determining the exact persona of the potential customer can still be a challenge. The lack of proper data insights might lead to ineffective advertiser decisions leading to a waste of resources.

Data science methods help marketers to understand the user persona and their preferred communication channels with data-driven insights. This means that the marketing budget will be spent on the right channels of influence, ignoring the irrelevant media, which a normal human being will think of covering for “just in case”. Such adjustment will inevitably increase the ROI and optimize the entire advertisement campaign. This will also retain brand relevance to the customers.

[Related: Your shopping cart just got a lot smarter!]

3. Brand New Social Media Marketing Strategy

Social media trends change faster than a human can track it. Facebook, LinkedIn, and Twitter define what is popular, and a marketer has to catch up with the trends.

Data science can keep you on track with the changing trends. Using the logic of Data Science in Marketing, one can get a bigger picture of what type of content people like interacting with. Data science allows us to gather and analyze data about people’s online behaviour. It provides the key metrics to adjust the SMM (Social Media Marketing) goals, which include – the time of posting, content type, amount, etc. These simple adjustments using data science insights can help increase the marketing ROI drastically.

4. Clearer Content Strategy

One of the biggest gaps between planning and execution that marketers face is knowing which channels will be affected and what kind of people will interact with their content and with what sentiment. Will be potential customers? Are interactors content gatherers? Are they the competition? Do they intend to ruin your reputation?

Knowing all this information will help streamline your content strategies.

As long as you know who your customers are; what are their perceptions about your brand; what information can attract/repel your customers; what social channels they are mostly active on; what are their sentiments with your content; what they usually do when they like or dislike a content; you’ll know what type of content you should produce.

For instance, some people hate emails, while others adore reading them. Some people want to resolve their queries publicly on social media, which some care about their online image. Data science can help achieve personalization to some extent, which can help humanize the conversations with your followers.

Let’s take another example of how data science in marketing can help stakeholders. It gives marketers insights about what phrases a customer would use while searching for a product/services online. Marketers can utilize this insight and prepare a content strategy that embeds these terms more often in your posts and articles.

Therefore, we can say that data science brings a variety of actionable insights about customer acquisition channels, their preferences, and engagement style, which can help plan content strategy accordingly.

5. Increasing Customer Loyalty

Your best customers are the ones who will not just purchase your product once but also will repeat buying and bring their friends and relatives to your store. Organizations realize that customer retention is easier than acquiring new customers.

But consolidating loyalty may be tricky. Data science can provide the marketing department with all the necessary information that can help boost customer loyalty. Based on purchase history and current search queries, analysts can predict their customer’s inclination towards a product. Accordingly, brands can create the most relevant offers for their customers. With personalized offers, existing customers feel special and will return to your brand and not go to the competitors.

The Essence of Data Science in Marketing

Using data science in marketing may ease the work of employees and uplift your strategies to new heights. We have to admit that the more structured information marketing teams have, the more effective their strategies become. At the core of any marketing efforts, data science can optimize cost for data processing and result in overwhelming conversion rates.

[Related: 5 Deep Learning Use Cases in Insurance]


About the Author: Marie Barnes is a writer for Bestforacar and an enthusiastic blogger interested in writing about technology, social media, work, travel, lifestyle, and current affairs. She shares her insights with the world through blogging. You can follow her on Medium.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top

May i help you?

Our Website is
Best Experienced on
Chrome & Safari

safari icon