Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(6)

Manufacturing(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(33)

Technology Modernization(9)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(41)

Insurtech(67)

Product Innovation(59)

Solutions(22)

E-health(12)

HealthTech(25)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(154)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(8)

Computer Vision(8)

Data Science(24)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

Basics of load testing in Enterprise Applications using J-Meter

5 minutes read

We need to test websites and applications for performance standards before delivering them to the client. The performance or benchmark testing is an ongoing function of software quality assurance that extends throughout the life cycle of the project. To build standards into the architecture of a system — the stability and response time of an application is extensively tested by applying a load or stress to the system.

Essentially, ‘load’ means the number of users using the application while ‘stability’ refers to the system’s ability to withstand the load created by the intended number of users. ‘Response time’ indicates the time taken to send a request, run the program and receive a response from a server.

Load testing on applications can be a challenging ordeal if a performance testing strategy is not predetermined. Testing tasks require multifaceted skill-sets — from writing test scripts, monitoring and analyzing test results to tweaking custom codes and scripts, and developing automated test scenarios for the actual testing.

So, is load testing on applications really necessary?

Quality testing ensures that the system is reliable, built for capacity and scalable. To achieve this, the involved stakeholders decide the budget considering its business impact.

Now, this raises a question — how do we predict traffic based on past trends? and how can we make the system more efficient to handle traffic without any dropouts? Also, if and when we hit peak loads, then how are we going to address the additional volume? For this, it is crucial to outline the performance testing strategy beforehand.

5 Key Benefits of Performance Testing

  1. It identifies the issues at the early stage before they become too costly to resolve (for example, exposing bugs that do not surface in cursory testing, such as memory management bugs, memory leaks, buffer overflows, etc.).
  2. Performance testing reduces development cycles, produces better quality and more scalable code.
  3. It prevents revenue and credibility loss due to poor web site performance.
  4. To enable intelligent planning for future scaling.
  5. It ensures that the system meets performance expectations (response time, throughput, etc.) under-designed levels of load.

Organizations don’t prefer manual testing these days because it is expensive and requires human resources and hardware. It is also quite complex to coordinate and synchronize multiple testers. Also, repeatability is limited in manual testing.

To find the stability and response time of each API, we can test different scenarios by varying the load at different time intervals on the application. We can then automate the application by using any performance testing tool.

Performance Testing Tools

There are a bunch of different tools available for testers such as Open Source testing Tools — Open STA Diesel Test, TestMaker, Grinder, LoadSim, J-Meter, Rubis; Commercial testing tools— LoadRunner, Silk Performer, Qengine, Empirix e-Load.

Among these, the most commonly used tool is Apache J-Meter. It is a 100% Java desktop application with a graphical interface that uses the Swing graphical API. It can, therefore, run on any environment/workstation that accepts Java virtual machine, for example, Windows, Linux, Mac, etc.

We can automate testing the application by integrating the ‘selenium scripts’ in the J-Meter tool. (The software that can perform load tests, performance-functional tests, regression tests, etc. on different technologies.)

[Related: A Complete Guide to Regression Testing in Agile]

If the project is large in scope and the number of users keeps increasing day-by-day then the server’s load will be greater. In such situations, Performance testing is useful to identify at what point the application will crash. To find the number of errors and warnings in the code, we use the J-Meter tool.

How J-Meter Works

J-Meter simulates a group of users sending requests to a target server and returns statistics that show the performance/functionality of the target server/application via tables, graphs, etc.

The following figure illustrates how J-Meter works:

How J-Meter works - Load Testing on applications

The J-Meter performance testing tool can find the performance of any application (no matter whatever the language used to build the project).

First, it requires a test plan which describes a series of steps that the J-Meter will execute when run. A complete test plan will consist of one or more thread groups, samplers, logic controllers, listeners, timers, assertions and configuration elements.

The ‘thread’ group elements are the beginning of any test plan. Thread group element controls the number of threads J-Meter will use during the test run. We can also control the following via thread group: setting the number of threads, setting the ramp-up time and setting the loop count. The number of threads implies the number of users to the server application, while the ramp-up period defines the time taken by J-Meter to get all the threads running. Loop count identifies the number of times to execute the test.

After creating the ‘thread’ group, we need to define the number of users, iterations and ramp-up time (or usage time). We can create virtual servers depending on the number of users defined in the thread group and start performing the action based on the parameters defined. Internally J-Meter will record all the results like response code, response time, throughput, latency, etc. It produces the results in the form of graphs, trees and tables.

J-Meter has two types of controllers: Samplers and Logic controllers. Samplers allow the J-Meter to send specific requests to a server, while Logic controllers control the order of processing of samplers in a thread. They can change the order of requests coming from any of their child elements. Listeners are then used to view the results of samplers in the form of reporting tables, graphs, trees or simple text in some log files.

Please remember, always do performance testing by changing one parameter at a time. This way, you’ll be able to monitor response and throughput metrics and correct discrepancies accordingly. The real purpose of load testing is to ensure that the application or site is functional for businesses to deliver real value to their users — so test practically, and think like a real user.

If you’ve any queries or doubts, please feel free to write to hello@mantralabsglobal.com.

About the author: Syed Khalid Hussain is a Software Engineer-QA at Mantra Labs Pvt Ltd. He is a pro at different QA testing methodologies and is integral to the organization’s testing services.

Load Testing on Applications FAQs

What is the purpose of load testing?

Load testing is done to ensure that the application is capable of withstanding the load created by the intended number of users (web traffic).

Which tool is used for load testing?

There are open source and commercial tools available for load testing. 
Open Source Tools are — Open STA Diesel Test, TestMaker, Grinder, LoadSim, J-Meter, Rubis. Commercial testing tools are — LoadRunner, Silk Performer, Qengine, Empirix e-Load.

How load testing is done?

Load testing is done using test scripts, monitoring and analyzing test results and developing automated test scenarios.

Check out these articles to catch the latest trends in mobile apps:

  1. 7 Important Points To Consider Before Developing A Mobile App
  2. The Clash of Clans: Kotlin Vs. Flutter
  3. Google for India September event 2019 key highlights
  4. Learn Ionic Framework From Scratch in Less Than 15 Minutes!
  5. AI in Mobile Development
  6. 10 Reasons to Learn Swift Programming Language
Cancel

Knowledge thats worth delivered in your inbox

Smart Manufacturing Dashboards: A Real-Time Guide for Data-Driven Ops

Smart Manufacturing starts with real-time visibility.

Manufacturing companies today generate data by the second through sensors, machines, ERP systems, and MES platforms. But without real-time insights, even the most advanced production lines are essentially flying blind.

Manufacturers are implementing real-time dashboards that serve as control towers for their daily operations, enabling them to shift from reactive to proactive decision-making. These tools are essential to the evolution of Smart Manufacturing, where connected systems, automation, and intelligent analytics come together to drive measurable impact.

Data is available, but what’s missing is timely action.

For many plant leaders and COOs, one challenge persists: operational data is dispersed throughout systems, delayed, or hidden in spreadsheets. And this delay turns into a liability.

Real-time dashboards help uncover critical answers:

  • What caused downtime during last night’s shift?
  • Was there a delay in maintenance response?
  • Did a specific inventory threshold trigger a quality issue?

By converting raw inputs into real-time manufacturing analytics, dashboards make operational intelligence accessible to operators, supervisors, and leadership alike, enabling teams to anticipate problems rather than react to them.

1. Why Static Reports Fall Short

  • Reports often arrive late—after downtime, delays, or defects have occurred.
  • Disconnected data across ERP, MES, and sensors limits cross-functional insights.
  • Static formats lack embedded logic for proactive decision support.

2. What Real-Time Dashboards Enable

Line performance and downtime trends
Track OEE in real time and identify underperforming lines.

Predictive maintenance alerts
Utilize historical and sensor data to identify potential part failures in advance.

Inventory heat maps & reorder thresholds
Anticipate stockouts or overstocks based on dynamic reorder points.

Quality metrics linked to operator actions
Isolate shifts or procedures correlated with spikes in defects or rework.

These insights allow production teams to drive day-to-day operations in line with Smart Manufacturing principles.

3. Dashboards That Drive Action

Role-based dashboards
Dashboards can be configured for machine operators, shift supervisors, and plant managers, each with a tailored view of KPIs.

Embedded alerts and nudges
Real-time prompts, like “Line 4 below efficiency threshold for 15+ minutes,” reduce response times and minimize disruptions.

Cross-functional drill-downs
Teams can identify root causes more quickly because users can move from plant-wide overviews to detailed machine-level data in seconds.

4. What Powers These Dashboards

Data lakehouse integration
Unified access to ERP, MES, IoT sensor, and QA systems—ensuring reliable and timely manufacturing analytics.

ETL pipelines
Real-time data ingestion from high-frequency sources with minimal latency.

Visualization tools
Custom builds using Power BI, or customized solutions designed for frontline usability and operational impact.

Smart Manufacturing in Action: Reducing Market Response Time from 48 Hours to 30 Minutes

Mantra Labs partnered with a North American die-casting manufacturer to unify its operational data into a real-time dashboard. Fragmented data, manual reporting, delayed pricing decisions, and inconsistent data quality hindered operational efficiency and strategic decision-making.

Tech Enablement:

  • Centralized Data Hub with real-time access to critical business insights.
  • Automated report generation with data ingestion and processing.
  • Accurate price modeling with real-time visibility into metal price trends, cost impacts, and customer-specific pricing scenarios. 
  • Proactive market analysis with intuitive Power BI dashboards and reports.

Business Outcomes:

  • Faster response to machine alerts
  • Quality incidents traced to specific operator workflows
  • 4X faster access to insights led to improved inventory optimization.

As this case shows, real-time dashboards are not just operational tools—they’re strategic enablers. 

(Learn More: Powering the Future of Metal Manufacturing with Data Engineering)

Key Takeaways: Smart Manufacturing Dashboards at a Glance

AspectWhat You Should Know
1. Why Static Reports Fall ShortDelayed insights after issues occur
Disconnected systems (ERP, MES, sensors)
No real-time alerts or embedded decision logic
2. What Real-Time Dashboards EnableTrack OEE and downtime in real-time
Predictive maintenance using sensor data
Dynamic inventory heat maps
Quality linked to operators
3. Dashboards That Drive ActionRole-based views (operator to CEO)
Embedded alerts like “Line 4 down for 15+ mins”
Drilldowns from plant-level to machine-level
4. What Powers These DashboardsUnified Data Lakehouse (ERP + IoT + MES)
Real-time ETL pipelines
Power BI or custom dashboards built for frontline usability

Conclusion

Smart Manufacturing dashboards aren’t just analytics tools—they’re productivity engines. Dashboards that deliver real-time insight empower frontline teams to make faster, better decisions—whether it’s adjusting production schedules, triggering preventive maintenance, or responding to inventory fluctuations.

Explore how Mantra Labs can help you unlock operations intelligence that’s actually usable.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot